×

On the Feynman-Kac formula. (English) Zbl 1468.60082

Joshua, V. C. (ed.) et al., Applied probability and stochastic processes. Selected papers based on the presentations at the international conference, Kerala, India, January, 7–10 2019. In honour of Prof. Dr. A. Krishnamoorthy. Singapore: Springer. Infosys Sci. Found. Ser., 491-506 (2020).
Summary: In this article given \(y:[0,\eta)\rightarrow H\), a continuous map into a Hilbert space \(H\), we study the equation \[ \hat{y}(t)=e^{\int\limits_0^tc(s,\hat{y})ds}y(t), \] where \(c(s,\cdot)\) is a given “potential” on \(C([0,\eta),H)\). Applying the transformation \(y\rightarrow\hat{y}\) to the solutions of the SPDE and SDE underlying a diffusion, we study the Feynman-Kac formula.
For the entire collection see [Zbl 1468.60003].

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60B11 Probability theory on linear topological spaces

References:

[1] Chung, K.L., Varadhan, S.R.S. (1980) Kac functionals and Schrodinger equations. In: Bhatia, R., Bhat, A.G., Parthasarathy, K.R. (eds.) Collected Papers of S.R.S. Varadhan, vol. 2, pp. 304-315. Hindustan Book Agency, New Delhi · Zbl 1316.60117
[2] Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992) · Zbl 1140.60034 · doi:10.1017/CBO9780511666223
[3] Gawarecki, L., Mandrekar, V.: Stochastic Differential Equations with Applications to Stochastic Partial Differential Equations. Springer, Berlin (2011) · Zbl 1228.60002
[4] Itô, K.: Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces. CBMS 47. SIAM, Philadelphia (1984) · Zbl 0547.60064
[5] Kac, M.: On the distribution of certain Wiener functionals. Trans. Am. Math. Soc. 65, 1-13 (1949) · Zbl 0032.03501 · doi:10.1090/S0002-9947-1949-0027960-X
[6] Kallenberg, O.: Foundations of Modern Probability. Springer, New York (2010) · Zbl 0996.60001
[7] Kallianpur, G., Xiong, J.: Stochastic Differential Equations in Infinite Dimensional Spaces. Lecture Notes, Monograph Series, vol. 26. Institute of Mathematical Statistics, Hayward (1995) · Zbl 0845.60008
[8] Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, New York (1998) · Zbl 0734.60060 · doi:10.1007/978-1-4612-0949-2
[9] Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications (Universitext). Springer, Berlin (2010)
[10] Rajeev, B.: Translation invariant diffusions in the space of tempered distributions. Indian J. Pure Appl. Math. 44(2), 231-258 (2013) · Zbl 1287.60079 · doi:10.1007/s13226-013-0012-0
[11] Rajeev, B.: Translation invariant diffusions and stochastic partial differential equations in \(\mathcal{S}^{\prime } (2019)\). http://arxiv.org/abs/1901.00277
[12] Rajeev, B., Thangavelu, S.: Probabilistic representations of solutions to the forward equation. Potential Anal. 28, 139-162 (2008) · Zbl 1134.60042 · doi:10.1007/s11118-007-9074-0
[13] Rajeev, B., Vasudeva Murthy, A.S.: Existence and uniqueness for 2nd order quasi linear parabolic PDE’s. Preprint
[14] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin (1999) · Zbl 0917.60006 · doi:10.1007/978-3-662-06400-9
[15] Stroock, D.W.: Partial Differential Equations for Probabilists. Cambridge University Press, Cambridge (2008) · Zbl 1145.35002
[16] Yosida, K.: Functional Analysis. Springer, Berlin (1979) · Zbl 0830.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.