×

On non-gradient \((m,\rho )\)-quasi-Einstein contact metric manifolds. (English) Zbl 1468.53066

Summary: Many authors have studied Ricci solitons and their analogs within the framework of (almost) contact geometry. In this article, we thoroughly study the \((m,\rho )\)-quasi-Einstein structure on a contact metric manifold. First, we prove that if a \(K\)-contact or Sasakian manifold \(M^{2n+1}\) admits a closed \((m,\rho )\)-quasi-Einstein structure, then it is an Einstein manifold of constant scalar curvature \(2n(2n+1)\), and for the particular case – a non-Sasakian \((k,\mu )\)-contact structure – it is locally isometric to the product of a Euclidean space \({\mathbb{R}}^{n+1}\) and a sphere \(S^n\) of constant curvature 4. Next, we prove that if a compact contact or \(H\)-contact metric manifold admits an \((m,\rho )\)-quasi-Einstein structure, whose potential vector field \(V\) is collinear to the Reeb vector field, then it is a \(K\)-contact \(\eta \)-Einstein manifold.

MSC:

53D10 Contact manifolds (general theory)
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)

References:

[1] Agricola, I., Dileo, G.: Generalizations of 3-Sasakian manifolds and skew torsion. Adv. Geom. doi:10.1515/advgeom-2018-0036 · Zbl 1448.53052
[2] Barros, A., Ribeiro, E., Jr.: Characterizations and integral formulae for generalized m-quasi-Einstein metrics. Bull. Braz. Math. Soc. 45, 325-341 (2014) · Zbl 1301.53041
[3] Barros, A., Ribeiro, E., Jr.: Integral formulae on quasi-Einstein manifolds and applications. Glasgow Math. J. 54, 213-223 (2012) · Zbl 1235.53047
[4] Barros, A.; Gomes, JN, Triviality of compact m-quasi-Einstein manifolds, Results Math., 71, 1, 241-250 (2017) · Zbl 1359.53034 · doi:10.1007/s00025-016-0556-5
[5] Barros, A.; Ribeiro, E.; Silva, JF, Uniqueness of quasi-Einstein metrics on 3-dimensional homogeneous Riemannian manifolds, Differ. Geom. Appl., 35, 60-73 (2014) · Zbl 1296.53093 · doi:10.1016/j.difgeo.2014.05.007
[6] Besse, A., Einstein Manifolds (2008), New York: Springer, New York · Zbl 1147.53001
[7] Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Birkhäuser (2002) · Zbl 1011.53001
[8] Blair, DE; Koufogiorgos, T.; Papantoniou, BJ, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91, 189-214 (1995) · Zbl 0837.53038 · doi:10.1007/BF02761646
[9] Boeckx, E.: A full classification of contact metric \((k,\mu )\)-spaces. Ill. J. Math. 44(1), 212-219 (2000) · Zbl 0969.53019
[10] Boyer, CP; Galicki, K., Einstein manifolds and contact geometry, Proc. Am. Math. Soc., 129, 2419-2430 (2001) · Zbl 0981.53027 · doi:10.1090/S0002-9939-01-05943-3
[11] Caminha, A.; Souza, P.; Camargo, F., Complete foliations of space forms by hypersurfaces, Bull. Braz. Math. Soc. (N.S.), 41, 3, 339-353 (2010) · Zbl 1226.53055 · doi:10.1007/s00574-010-0015-y
[12] Catino, G.; Mazzieri, L., Gradient Einstein solitons, Nonlinear Anal., 132, 66-94 (2016) · Zbl 1330.53055 · doi:10.1016/j.na.2015.10.021
[13] Cao, HD, Recent progress on Ricci solitons, Adv. Lect. Math. (ALM), 11, 1-38 (2009) · Zbl 1201.53046
[14] Cho, JT; Sharma, R., Contact geometry and Ricci solitons, Int. J. Geom. Methods Mod. Phys., 7, 6, 951-960 (2010) · Zbl 1202.53063 · doi:10.1142/S0219887810004646
[15] Case, J.; Shu, YJ; Wei, G., Rigidity of quasi-Einstein metrics, Differ. Geom. Appl., 29, 1, 93-100 (2011) · Zbl 1215.53033 · doi:10.1016/j.difgeo.2010.11.003
[16] Chen, X., Quasi-Einstein structures and almost cosymplectic manifolds, RACSAM, 114, 2, 1-14 (2020) · Zbl 1433.53076
[17] Ghosh, A.: \(m\)-quasi-Einstein metric and contact geometry. RACSAM 113(3), 2587-2600 (2019) · Zbl 1421.53048
[18] Ghosh, A.: \((m,\rho )\)-quasi-Einstein metrics in the framework of \(K\)-contact manifolds. Math. Phys. Anal. Geom. 17, 369-376 (2014) · Zbl 1309.53031
[19] Ghosh, A., Quasi-Einstein contact metric manifolds, Glasg. Math. J., 57, 3, 569-577 (2015) · Zbl 1323.53045 · doi:10.1017/S0017089514000494
[20] Ghosh, A.; Sharma, R., Sasakian metric as a Ricci Soliton and related results, J. Geom. Phys., 75, 1-6 (2014) · Zbl 1283.53035 · doi:10.1016/j.geomphys.2013.08.016
[21] Ghosh, A., Sharma, R., Cho, J.T.: Contact metric manifolds with \(\eta \)-parallel torsion tensor. Ann. Global Anal. Geom. 34, 287-299 (2008) · Zbl 1167.53031
[22] Huang, G., Wei, Y.: The classification of \((m,\rho )\)-quasi-Einstein manifolds. Ann. Global Anal. Geom. 44, 269-282 (2013) · Zbl 1285.53028
[23] Lott, J., Some geometric properties of the Bakry-Émery-Ricci tensor, Comment. Math. Helv., 78, 4, 865-883 (2003) · Zbl 1038.53041 · doi:10.1007/s00014-003-0775-8
[24] Myers, SB, Connections between differential geometry and topology, Duke Math. J., 1, 3, 376-391 (1935) · Zbl 0012.27502 · doi:10.1215/S0012-7094-35-00126-0
[25] Perrone, D., Contact metric manifolds whose characteristic vector field is a harmonic vector field, Differ. Geom. Appl., 20, 367-378 (2004) · Zbl 1061.53028 · doi:10.1016/j.difgeo.2003.12.007
[26] Qian, Z., Estimates for weight volumes and applications, Quart. J. Math. Oxford Ser., 2, 48, 235-242 (1997) · Zbl 0902.53032 · doi:10.1093/qmath/48.2.235
[27] Sharma, R.: Certain results on \(K\)-contact and \((k,\mu )\)-contact manifolds. J. Geom. 89, 138-147 (2008) · Zbl 1175.53060
[28] Shin, J.: On the classification of 4-dimensional \((m,\rho )\)-quasi-Einstein manifolds with harmonic Weyl curvature. Ann. Global Anal. Geom. 51, 379-399 (2017) · Zbl 1369.53029
[29] Tanno, S., The topology of contact Riemannian manifolds, Ill. J. Math., 12, 4, 700-717 (1968) · Zbl 0165.24703 · doi:10.1215/ijm/1256053971
[30] Yano, K.: Integral Formulas in Riemannian Geometry, vol. 1. M. Dekker (1970) · Zbl 0213.23801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.