×

Extended auxiliary equation method and its applications to three generalized NLS equations. (English) Zbl 1468.35188

Summary: The auxiliary equation method proposed by Sirendaoreji is extended to construct new types of elliptic function solutions of nonlinear evolution equations. The effectiveness of the extended method is demonstrated by applications to the RKL model, the generalized derivative NLS equation and the Kundu-Eckhaus equation. Not only are the Jacobian elliptic function solutions are derived, but also the solitary wave solutions and trigonometric function solutions are obtained in a unified way.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35B10 Periodic solutions to PDEs
35C05 Solutions to PDEs in closed form
35C08 Soliton solutions

Software:

Maple; RATH

References:

[1] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0762.35001
[2] Rogers, C.; Shadwick, W. F., Bäcklund Transformations and Their Applications. Bäcklund Transformations and Their Applications, Mathematics in Science and Engineering, 161 (1982), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0492.58002
[3] Matveev, V. B.; Salle, M. A., Darboux Transformations and Solitons. Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics (1991), Berlin, Germany: Springer, Berlin, Germany · Zbl 0744.35045
[4] Hirota, R., The Direct Method in Soliton Theory. The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics, 155 (2004), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 1099.35111
[5] Weiss, J.; Tabor, M.; Carnevale, G., The Painlevé property for partial differential equations, Journal of Mathematical Physics, 24, 3, 522-526 (1983) · Zbl 0514.35083 · doi:10.1063/1.525721
[6] Lou, S.-Y., On the coherent structures of the Nizhnik-Novikov-Veselov equation, Physics Letters A, 277, 2, 94-100 (2000) · Zbl 1273.35264 · doi:10.1016/S0375-9601(00)00699-X
[7] Radha, R.; Kumar, C. S.; Lakshmanan, M.; Gilson, C. R., The collision of multimode dromions and a firewall in the two-component long-wave-short-wave resonance interaction equation, Journal of Physics A, 42, 10 (2009) · Zbl 1163.35037 · doi:10.1088/1751-8113/42/10/102002
[8] Xu, G.-Q.; Huang, X.-Z., New variable separation solutions for two nonlinear evolution equations in higher dimensions, Chinese Physics Letters, 30, 3 (2013) · doi:10.1088/0256-307X/30/3/030202
[9] Malfliet, W., Solitary wave solutions of nonlinear wave equations, American Journal of Physics, 60, 7, 650-654 (1992) · Zbl 1219.35246 · doi:10.1119/1.17120
[10] Yao, R.-X.; Li, Z.-B., New exact solutions for three nonlinear evolution equations, Physics Letters A, 297, 3-4, 196-204 (2002) · Zbl 0995.35003 · doi:10.1016/S0375-9601(02)00294-3
[11] Liu, Y.-P.; Li, Z.-B., A Maple package for finding exact solitary wave solutions of coupled nonlinear evolution equations, Computer Physics Communications, 155, 1, 65-76 (2003) · Zbl 1196.37004 · doi:10.1016/S0010-4655(03)00347-3
[12] Abdou, M. A.; Soliman, A. A., New applications of variational iteration method, Physica D, 211, 1-2, 1-8 (2005) · Zbl 1084.35539 · doi:10.1016/j.physd.2005.08.002
[13] He, J.-H., Application of homotopy perturbation method to nonlinear wave equations, Chaos, Solitons and Fractals, 26, 3, 695-700 (2005) · Zbl 1072.35502 · doi:10.1016/j.chaos.2005.03.006
[14] Liu, S.; Fu, Z.; Liu, S.; Zhao, Q., Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Physics Letters A, 289, 1-2, 69-74 (2001) · Zbl 0972.35062 · doi:10.1016/S0375-9601(01)00580-1
[15] Xu, G.-Q.; Li, Z.-B., On the Painlevé integrability, periodic wave solutions and soliton solutions of generalized coupled higher-order nonlinear Schrödinger equations, Chaos, Solitons and Fractals, 26, 5, 1363-1375 (2005) · Zbl 1072.35586 · doi:10.1016/j.chaos.2005.04.007
[16] Xu, G.-Q.; Li, Z.-B., Applications of Jacobi elliptic function expansion method for nonlinear differential-difference equations, Communications in Theoretical Physics, 43, 3, 385-388 (2005) · doi:10.1088/0253-6102/43/3/001
[17] Xu, G.-Q., New types of exact solutions for the fourth-order dispersive cubic-quintic nonlinear Schrödinger equation, Applied Mathematics and Computation, 217, 12, 5967-5971 (2011) · Zbl 1210.35241 · doi:10.1016/j.amc.2010.12.008
[18] Yan, Z., Periodic, solitary and rational wave solutions of the 3D extended quantum Zakharov-Kuznetsov equation in dense quantum plasmas, Physics Letters A, 373, 29, 2432-2437 (2009) · Zbl 1231.76362 · doi:10.1016/j.physleta.2009.04.018
[19] Hong, B., New exact Jacobi elliptic functions solutions for the generalized coupled Hirota-Satsuma KdV system, Applied Mathematics and Computation, 217, 2, 472-479 (2010) · Zbl 1200.35260 · doi:10.1016/j.amc.2010.05.079
[20] Hong, B.; Lu, D., New Jacobi elliptic function-like solutions for the general KdV equation with variable coefficients, Mathematical and Computer Modelling, 55, 3-4, 1594-1600 (2012) · Zbl 1255.35193 · doi:10.1016/j.mcm.2011.10.057
[21] Zhou, Y.; Wang, M.; Wang, Y., Periodic wave solutions to a coupled KdV equations with variable coefficients, Physics Letters A, 308, 1, 31-36 (2003) · Zbl 1008.35061 · doi:10.1016/S0375-9601(02)01775-9
[22] Yomba, E., The extended F-expansion method and its application for solving the nonlinear wave, CKGZ, GDS, DS and GZ equations, Physics Letters A, 340, 1-4, 149-160 (2005) · Zbl 1145.35455 · doi:10.1016/j.physleta.2005.03.066
[23] Fan, E., Extended tanh-function method and its applications to nonlinear equations, Physics Letters A, 277, 4-5, 212-218 (2000) · Zbl 1167.35331 · doi:10.1016/S0375-9601(00)00725-8
[24] Fan, E., Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method, Journal of Physics A, 35, 32, 6853-6872 (2002) · Zbl 1039.35029 · doi:10.1088/0305-4470/35/32/306
[25] Xu, G., An elliptic equation method and its applications in nonlinear evolution equations, Chaos, Solitons and Fractals, 29, 4, 942-947 (2006) · Zbl 1142.35587 · doi:10.1016/j.chaos.2005.08.058
[26] Chen, Y.; Yan, Z., Weierstrass semi-rational expansion method and new doubly periodic solutions of the generalized Hirota-Satsuma coupled KdV system, Applied Mathematics and Computation, 177, 1, 85-91 (2006) · Zbl 1094.65104 · doi:10.1016/j.amc.2005.10.037
[27] Wang, D.-S.; Li, H.-B., Elliptic equation’s new solutions and their applications to two nonlinear partial differential equations, Applied Mathematics and Computation, 188, 1, 762-771 (2007) · Zbl 1118.65379 · doi:10.1016/j.amc.2006.10.026
[28] Layeni, O. P., A new rational auxiliary equation method and exact solutions of a generalized Zakharov system, Applied Mathematics and Computation, 215, 8, 2901-2907 (2009) · Zbl 1180.35445 · doi:10.1016/j.amc.2009.09.034
[29] Li, H.; Wang, K.; Li, J., Exact traveling wave solutions for the Benjamin-Bona-Mahony equation by improved Fan sub-equation method, Applied Mathematical Modelling, 37, 14-15, 7644-7652 (2013) · Zbl 1438.35359 · doi:10.1016/j.apm.2013.03.027
[30] Sirendaoreji, S., A new auxiliary equation and exact travelling wave solutions of nonlinear equations, Physics Letters A, 356, 2, 124-130 (2006) · Zbl 1160.35527 · doi:10.1016/j.physleta.2006.03.034
[31] Sirendaoreji, S., Auxiliary equation method and new solutions of Klein-Gordon equations, Chaos, Solitons and Fractals, 31, 4, 943-950 (2007) · Zbl 1143.35341 · doi:10.1016/j.chaos.2005.10.048
[32] Zhang, S.; Xia, T.-C., A generalized auxiliary equation method and its application to \((2 + 1)\)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations, Journal of Physics A, 40, 2, 227-248 (2007) · Zbl 1105.35320 · doi:10.1088/1751-8113/40/2/003
[33] Huang, D.-J.; Li, D.-S.; Zhang, H.-Q., Explicit and exact travelling wave solutions for the generalized derivative Schrödinger equation, Chaos, Solitons and Fractals, 31, 3, 586-593 (2007) · Zbl 1139.35092 · doi:10.1016/j.chaos.2005.10.007
[34] Yomba, E., The sub-ODE method for finding exact travelling wave solutions of generalized nonlinear Camassa-Holm, and generalized nonlinear Schrödinger equations, Physics Letters A, 372, 3, 215-222 (2008) · Zbl 1217.81074 · doi:10.1016/j.physleta.2007.03.008
[35] Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1992), New York, NY, USA: Dover, New York, NY, USA
[36] Radhakrishnan, R.; Kundu, A.; Lakshmanan, M., Coupled nonlinear Schrödinger equations with cubic-quintic nonlinearity: integrability and soliton interaction in non-Kerr media, Physical Review E, 60, 3, 3314-3323 (1999)
[37] Hong, W.-P., Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non-Kerr terms, Optics Communications, 194, 1-3, 217-223 (2001) · doi:10.1016/S0030-4018(01)01267-6
[38] Wang, M.; Li, X.; Zhang, J., Sub-ODE method and solitary wave solutions for higher order nonlinear Schrödinger equation, Physics Letters A, 363, 1-2, 96-101 (2007) · Zbl 1197.81129 · doi:10.1016/j.physleta.2006.10.077
[39] Triki, H.; Taha, T. R., Exact analytic solitary wave solutions for the RKL model, Mathematics and Computers in Simulation, 80, 4, 849-854 (2009) · Zbl 1186.35210 · doi:10.1016/j.matcom.2009.08.031
[40] van Saarloos, W.; Hohenberg, P. C., Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations, Physica D, 56, 4, 303-367 (1992) · Zbl 0763.35088 · doi:10.1016/0167-2789(92)90175-M
[41] Kundu, A., Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger type equations, Journal of Mathematical Physics, 25, 12, 3433-3438 (1984) · doi:10.1063/1.526113
[42] Kundu, A., Exact solutions to higher-order nonlinear equations through gauge transformation, Physica D, 25, 1-3, 399-406 (1987) · Zbl 0612.76002 · doi:10.1016/0167-2789(87)90113-8
[43] Eckhaus, W., The Long-Time Behaviour for Perturbed Wave-Equations and Related Problems (1985), Department of Mathematics, University of Utrecht
[44] Eckhaus, W., The long-time behaviour for perturbed wave-equations and related problems, Trends in Applications of Pure Mathematics to Mechanics. Trends in Applications of Pure Mathematics to Mechanics, Lecture Notes in Physics, 249, 168-194 (1986), Berlin, Germany: Springer, Berlin, Germany · Zbl 0629.35085 · doi:10.1007/BFb0016391
[45] Calogero, F.; Eckhaus, W., Nonlinear evolution equations, rescalings, model PDEs and their integrability. I, Inverse Problems, 3, 2, 229-262 (1987) · Zbl 0645.35087
[46] Zhang, W.-G.; Ma, W.-X., Explicit solitary-wave solutions to generalized Pochhammer-Chree equations, Applied Mathematics and Mechanics, 20, 6, 625-632 (1999) · Zbl 0935.35132 · doi:10.1007/BF02464941
[47] Sakaguchi, H.; Malomed, B. A., Stable localized pulses and zigzag stripes in a two-dimensional diffractive-diffusive Ginzburg-Landau equation, Physica D, 159, 1-2, 91-100 (2001) · Zbl 0981.78008 · doi:10.1016/S0167-2789(01)00334-7
[48] Shang, Y., Explicit and exact solutions for a generalized long-short wave resonance equations with strong nonlinear term, Chaos, Solitons and Fractals, 26, 2, 527-539 (2005) · Zbl 1070.35039 · doi:10.1016/j.chaos.2005.01.066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.