×

Navier-Stokes equations in a curved thin domain. III: Thin-film limit. (English) Zbl 1468.35112

Adv. Differ. Equ. 25, No. 9-10, 457-626 (2020); erratum ibid. 28, No. 3-4, 341-346 (2023).
Summary: We consider the Navier-Stokes equations with Navier’s slip boundary conditions in a three-dimensional curved thin domain around a given closed surface. Under suitable assumptions, we show that the average in the thin direction of a strong solution to the bulk Navier-Stokes equations converges weakly in appropriate function spaces on the limit surface as the thickness of the thin domain tends to zero. Moreover, we characterize the limit as a weak solution to limit equations, which are the damped and weighted Navier-Stokes equations on the limit surface. We also prove the strong convergence of the average of a strong solution to the bulk equations towards a weak solution to the limit equations by showing estimates for the difference between them. In some special case, our limit equations agree with the Navier-Stokes equations on a Riemannian manifold in which the viscous term contains the Ricci curvature. This is the first result on a rigorous derivation of the surface Navier-Stokes equations on a general closed surface by the thin-film limit.
For Parts I and II, see [the author, “Navier-Stokes equations in a curved thin domain. I: Uniform estimates for the Stokes operator”, Preprint, arXiv:2002.06343; J. Math. Fluid Mech. 23, No. 1, Paper No. 7, 60 p. (2021; Zbl 1458.35305)].

MSC:

35Q30 Navier-Stokes equations
76A20 Thin fluid films
76D05 Navier-Stokes equations for incompressible viscous fluids
35B25 Singular perturbations in context of PDEs
35R01 PDEs on manifolds

Citations:

Zbl 1458.35305

References:

[1] R. A. Adams and J. J. F. Fournier,Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. · Zbl 1098.46001
[2] C. Amrouche and A. Rejaiba,Lp-theory for Stokes and Navier-Stokes equations with Navier boundary condition, J. Differential Equations256(2014), 1515-1547. · Zbl 1285.35063
[3] R. Aris,Vectors, tensors, and the basic equations of fluid mechanics, Dover Publications, 1989. · Zbl 1158.76300
[4] M. Arroyo and A. DeSimone,Relaxation dynamics of fluid membranes, Phys. Rev. E (3)79(2009), 031915, 17.
[5] J. W. Barrett, H. Garcke, and R. N¨urnberg,Stable numerical approximation of twophase flow with a Boussinesq-Scriven surface fluid, Commun. Math. Sci.13(2015), 1829-1874. · Zbl 1329.35241
[6] H. Beir˜ao Da Veiga,Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions, Adv. Differential Equations9(2004), 1079-1114. · Zbl 1103.35084
[7] D. Bothe and J. Pr¨uss,On the two-phase Navier-Stokes equations with BoussinesqScriven surface fluid, J. Math. Fluid Mech.12(2010), 133-150. · Zbl 1261.35100
[8] M. J. Boussinesq,Sur l’existence d’une viscosit´e superficielle, dans la mince couche de transition s´eparant un liquide d’un autre fluide contigu, Ann. Chim. Phys.29 (1913), 349-357. · JFM 44.0914.03
[9] F. Boyer and P. Fabrie,Mathematical tools for the study of the incompressible Navier-Stokes equations and related models, Applied Mathematical Sciences, vol. 183, Springer, New York, 2013. · Zbl 1286.76005
[10] C. H. Chan and M. Czubak,Non-uniqueness of the Leray-Hopf solutions in the hyperbolic setting, Dyn. Partial Differ. Equ.10(2013), 43-77. · Zbl 1307.35189
[11] C. H. Chan, M. Czubak, and M. M. Disconzi,The formulation of the Navier-Stokes equations on Riemannian manifolds, J. Geom. Phys.121(2017), 335-346. · Zbl 1376.58009
[12] B.-Y. Chen,Total mean curvature and submanifolds of finite type, 2nd ed., Series in Pure Mathematics, vol. 27, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. With a foreword by Leopold Verstraelen. · Zbl 1326.53004
[13] P. G. Ciarlet,Mathematical elasticity. Vol. II, Studies in Mathematics and its Applications, vol. 27, North-Holland Publishing Co., Amsterdam, 1997. Theory of plates. · Zbl 0888.73001
[14] P. G. Ciarlet,Mathematical elasticity. Vol. III, Studies in Mathematics and its Applications, vol. 29, North-Holland Publishing Co., Amsterdam, 2000. Theory of shells. · Zbl 0953.74004
[15] P. Constantin and C. Foias,Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. · Zbl 0687.35071
[16] M. Dindoˇs and M. Mitrea,The stationary Navier-Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz andC1domains, Arch. Ration. Mech. Anal. 174(2004), 1-47. · Zbl 1059.76014
[17] L. R. Duduchava, D. Mitrea, and M. Mitrea,Differential operators and boundary value problems on hypersurfaces, Math. Nachr.279(2006), 996-1023. · Zbl 1112.58020
[18] G. Dziuk and C. M. Elliott,Finite element methods for surface PDEs, Acta Numer. 22(2013), 289-396. · Zbl 1296.65156
[19] D. G. Ebin and J. Marsden,Groups of diffeomorphisms and the motion of an incompressible fluid., Ann. of Math. (2)92(1970), 102-163. · Zbl 0211.57401
[20] C. M. Elliott and B. Stinner,Analysis of a diffuse interface approach to an advection diffusion equation on a moving surface, Math. Models Methods Appl. Sci.19(2009), 787-802. · Zbl 1200.35018
[21] L. C. Evans,Partial differential equations, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. · Zbl 1194.35001
[22] T.-P. Fries,Higher-order surface FEM for incompressible Navier-Stokes flows on manifolds, Internat. J. Numer. Methods Fluids88(2018), 55-78.
[23] G. P. Galdi,An introduction to the mathematical theory of the Navier-Stokes equations, 2nd ed., Springer Monographs in Mathematics, Springer, New York, 2011. Steady-state problems. · Zbl 1245.35002
[24] D. Gilbarg and N. S. Trudinger,Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. · Zbl 1042.35002
[25] J. K. Hale and G. Raugel,A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc.329(1992), 185-219. · Zbl 0761.35052
[26] J. K. Hale and G. Raugel,Reaction-diffusion equation on thin domains, J. Math. Pures Appl. (9)71(1992), 33-95. · Zbl 0840.35044
[27] M. Higaki,Navier wall law for nonstationary viscous incompressible flows, J. Differential Equations260(2016), 7358-7396. · Zbl 1332.76015
[28] L. T. Hoang,Incompressible fluids in thin domains with Navier friction boundary conditions (I), J. Math. Fluid Mech.12(2010), 435-472. · Zbl 1261.35107
[29] L. T. Hoang and G. R. Sell,Navier-Stokes equations with Navier boundary conditions for an oceanic model, J. Dynam. Differential Equations22(2010), 563-616. · Zbl 1204.86010
[30] L. T. Hoang,Incompressible fluids in thin domains with Navier friction boundary conditions (II), J. Math. Fluid Mech.15(2013), 361-395. · Zbl 1287.35070
[31] C. Hu,Navier-Stokes equations in 3D thin domains with Navier friction boundary condition, J. Differential Equations236(2007), 133-163. · Zbl 1130.35103
[32] D. Iftimie,The 3D Navier-Stokes equations seen as a perturbation of the 2D NavierStokes equations, Bull. Soc. Math. France127(1999), 473-517 (English, with English and French summaries). · Zbl 0946.35059
[33] D. Iftimie and G. Raugel,Some results on the Navier-Stokes equations in thin 3D domains, J. Differential Equations169(2001), 281-331. Special issue in celebration of Jack K. Hale’s 70th birthday, Part 4 (Atlanta, GA/Lisbon, 1998). · Zbl 0972.35085
[34] D. Iftimie, G. Raugel, and G. R. Sell,Navier-Stokes equations in thin 3D domains with Navier boundary conditions, Indiana Univ. Math. J.56(2007), 1083-1156. · Zbl 1129.35056
[35] A. A. Il0in,Navier-Stokes and Euler equations on two-dimensional closed manifolds, Mat. Sb.181(1990), 521-539 (Russian); English transl., Math. USSR-Sb.69(1991), 559-579. · Zbl 0724.35088
[36] A. A. Il0in and A. N. Filatov,Unique solvability of the Navier-Stokes equations on a two-dimensional sphere, Dokl. Akad. Nauk SSSR301(1988), 18-22 (Russian); English transl., Soviet Math. Dokl.38(1989), 9-13. · Zbl 0688.35076
[37] W. J¨ager and A. Mikeli´c,On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Differential Equations170(2001), 96-122. · Zbl 1009.76017
[38] T. Jankuhn, M. A. Olshanskii, and A. Reusken,Incompressible fluid problems on embedded surfaces: modeling and variational formulations, Interfaces Free Bound. 20(2018), 353-377. · Zbl 1406.35224
[39] S. Jimbo and K. Kurata,Asymptotic behavior of eigenvalues of the Laplacian on a thin domain under the mixed boundary condition, Indiana Univ. Math. J.65(2016), 867-898. · Zbl 1348.35158
[40] J. Jost,Riemannian geometry and geometric analysis, 6th ed., Universitext, Springer, Heidelberg, 2011. · Zbl 1227.53001
[41] B. Khesin and G. Misio lek,Euler and Navier-Stokes equations on the hyperbolic plane, Proc. Natl. Acad. Sci. USA109(2012), 18324-18326.
[42] H. Koba, C. Liu, and Y. Giga,Energetic variational approaches for incompressible fluid systems on an evolving surface, Quart. Appl. Math.75(2017), 359-389. · Zbl 1358.37081
[43] H. Koba, C. Liu, and Y. Giga,Errata to “Energetic variational approaches for incompressible fluid systems on an evolving surface”, Quart. Appl. Math.76(2018), 147-152. · Zbl 1375.49066
[44] M. Kohr and W. L. Wendland,Variational approach for the Stokes and Navier-Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds, Calc. Var. Partial Differential Equations57(2018), Art. 165, 41. · Zbl 1404.35150
[45] D. Krejˇciˇr´ık,Spectrum of the Laplacian in narrow tubular neighbourhoods of hypersurfaces with combined Dirichlet and Neumann boundary conditions, Math. Bohem. 139(2014), 185-193. · Zbl 1340.35239
[46] I. Kukavica and M. Ziane,Regularity of the Navier-Stokes equation in a thin periodic domain with large data, Discrete Contin. Dyn. Syst.16(2006), 67-86. · Zbl 1115.35098
[47] I. Kukavica and M. Ziane,On the regularity of the Navier-Stokes equation in a thin periodic domain, J. Differential Equations234(2007), 485-506. · Zbl 1118.35029
[48] P. L. Lederer, C. Lehrenfeld, and J. Sch¨oberl,Divergence-free tangential finite element methods for incompressible flows on surfaces, Internat. J. Numer. Methods Engrg.121(2020), 2503-2533. · Zbl 07841929
[49] J. M. Lee,Introduction to smooth manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 218, Springer, New York, 2013. · Zbl 1258.53002
[50] J. M. Lee,Introduction to Riemannian manifolds, Graduate Texts in Mathematics, vol. 176, Springer, Cham, 2018. Second edition of [MR1468735]. · Zbl 1409.53001
[51] M. Lewicka and S. M¨uller,The uniform Korn-Poincar´e inequality in thin domains, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire28(2011), 443-469 (English, with English and French summaries). · Zbl 1253.74055
[52] L. A. Lichtenfelz,Nonuniqueness of solutions of the Navier-Stokes equations on Riemannian manifolds, Ann. Global Anal. Geom.50(2016), 237-248. · Zbl 1358.35095
[53] J.-L. Lions and E. Magenes,Non-homogeneous boundary value problems and applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth; Die Grundlehren der mathematischen Wissenschaften, Band 181. · Zbl 0223.35039
[54] J.-L. Lions, R. Temam, and S. H. Wang,New formulations of the primitive equations of atmosphere and applications, Nonlinearity5(1992), 237-288. · Zbl 0746.76019
[55] J.-L. Lions, R. Temam, and S. H. Wang,On the equations of the large-scale ocean, Nonlinearity5(1992), 1007-1053. · Zbl 0766.35039
[56] J.-L. Lions, R. Temam, and S. H. Wang,Mathematical theory for the coupled atmosphere-ocean models. (CAO III), J. Math. Pures Appl. (9)74(1995), 105-163. · Zbl 0866.76025
[57] M. Mitrea and S. Monniaux,The nonlinear Hodge-Navier-Stokes equations in Lipschitz domains, Differential Integral Equations22(2009), 339-356. · Zbl 1240.35412
[58] M. Mitrea and M. Taylor,Navier-Stokes equations on Lipschitz domains in Riemannian manifolds, Math. Ann.321(2001), 955-987. · Zbl 1039.35079
[59] Y. Mitsumatsu and Y. Yano,Geometry of an incompressible fluid on a Riemannian manifold, S¯urikaisekikenky¯usho K¯oky¯uroku (2002), 33-47 (Japanese). Geometric mechanics (Japanese) (Kyoto, 2002).
[60] T.-H. Miura,Zero width limit of the heat equation on moving thin domains, Interfaces Free Bound.19(2017), 31-77. · Zbl 1371.35369
[61] T.-H. Miura,On singular limit equations for incompressible fluids in moving thin domains, Quart. Appl. Math.76(2018), 215-251. · Zbl 1384.35099
[62] T.-H. Miura,Mathematical analysis of evolution equations in curved thin domains or on moving surfaces, Doctoral thesis, University of Tokyo, 2018.
[63] T.-H. Miura,Navier-Stokes equations in a curved thin domain, Part I: uniform estimates for the Stokes operator, arXiv:2002.06343.
[64] T.-H. Miura,Navier-Stokes equations in a curved thin domain, Part II: global existence of a strong solution, arXiv:2002.06347.
[65] I. Moise, R. Temam, and M. Ziane,Asymptotic analysis of the Navier-Stokes equations in thin domains, Topol. Methods Nonlinear Anal.10(1997), 249-282. Dedicated to Olga Ladyzhenskaya. · Zbl 0957.35108
[66] S. Montgomery-Smith,Global regularity of the Navier-Stokes equation on thin threedimensional domains with periodic boundary conditions, Electron. J. Differential Equations (1999), No. 11, 19. · Zbl 0923.35120
[67] T. Nagasawa,Construction of weak solutions of the Navier-Stokes equations on Riemannian manifold by minimizing variational functionals, Adv. Math. Sci. Appl.9 (1999), 51-71. · Zbl 0944.58021
[68] C. L. M. H. Navier,M´emoire sur les lois du mouvement des fluides, Mem. Acad. R. Sci. Inst. France6(1823), 389-440.
[69] J. Neˇcas,Direct methods in the theory of elliptic equations, Springer Monographs in Mathematics, Springer, Heidelberg, 2012. Translated from the 1967 French original by Gerard Tronel and Alois Kufner; Editorial coordination and preface by ˇS´arka Neˇcasov´a and a contribution by Christian G. Simader.
[70] I. Nitschke, S. Reuther, and A. Voigt,Discrete exterior calculus (DEC) for the surface Navier-Stokes equation, Transport processes at fluidic interfaces, Adv. Math. Fluid Mech., Birkh¨auser/Springer, Cham, 2017, pp. 177-197. · Zbl 1391.76563
[71] I. Nitschke, A. Voigt, and J. Wensch,A finite element approach to incompressible two-phase flow on manifolds, J. Fluid Mech.708(2012), 418-438. · Zbl 1275.76162
[72] M. A. Olshanskii, A. Quaini, A. Reusken, and V. Yushutin,A finite element method for the surface Stokes problem, SIAM J. Sci. Comput.40(2018), A2492-A2518. · Zbl 1397.65287
[73] M. A. Olshanskii and V. Yushutin,A penalty finite element method for a fluid system posed on embedded surface, J. Math. Fluid Mech.21(2019), Paper No. 14, 18. · Zbl 1446.76095
[74] P. Petersen,Riemannian geometry, 2nd ed., Graduate Texts in Mathematics, vol. 171, Springer, New York, 2006. · Zbl 1220.53002
[75] V. Pierfelice,The incompressible Navier-Stokes equations on non-compact manifolds, J. Geom. Anal.27(2017), 577-617. · Zbl 1480.35312
[76] V. Priebe,Solvability of the Navier-Stokes equations on manifolds with boundary, Manuscripta Math.83(1994), 145-159. · Zbl 0803.35108
[77] M. Prizzi, M. Rinaldi, and K. P. Rybakowski,Curved thin domains and parabolic equations, Studia Math.151(2002), 109-140. · Zbl 0999.35005
[78] M. Prizzi and K. P. Rybakowski,On inertial manifolds for reaction-diffusion equations on genuinely high-dimensional thin domains, Studia Math.154(2003), 253- 275. · Zbl 1029.35045
[79] J. Pr¨uss, G. Simonett, and M. Wilke,On the Navier-Stokes equations on surfaces, arXiv:2005.00830.
[80] G. Raugel and G. R. Sell,Navier-Stokes equations on thin3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc.6(1993), 503-568. · Zbl 0787.34039
[81] G. Raugel and G. R. Sell,Navier-Stokes equations on thin3D domains. II. Global regularity of spatially periodic solutions, Nonlinear partial differential equations and their applications. Coll‘ege de France Seminar, Vol. XI (Paris, 1989), Pitman Res. Notes Math. Ser., vol. 299, Longman Sci. Tech., Harlow, 1994, pp. 205-247. · Zbl 0804.35106
[82] G. Raugel and G. R. Sell,Navier-Stokes equations in thin3D domains. III. Existence of a global attractor, Turbulence in fluid flows, IMA Vol. Math. Appl., vol. 55, Springer, New York, 1993, pp. 137-163. · Zbl 0804.76024
[83] G. Raugel,Dynamics of partial differential equations on thin domains, Dynamical systems (Montecatini Terme, 1994), Lecture Notes in Math., vol. 1609, Springer, Berlin, 1995, pp. 208-315. · Zbl 0851.58038
[84] A. Reusken,Stream function formulation of surface Stokes equations, IMA J. Numer. Anal.40(2020), 109-139. · Zbl 1466.65201
[85] S. Reuther and A. Voigt,The interplay of curvature and vortices in flow on curved surfaces, Multiscale Model. Simul.13(2015), 632-643. · Zbl 1320.35289
[86] S. Reuther and A. Voigt,Solving the incompressible surface Navier-Stokes equation by surface finite elements, Phys. Fluids30(2018), 012107. · Zbl 1403.35243
[87] W. Rudin,Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. · Zbl 0867.46001
[88] A. Sahu, Y. A. D. Omar, R. A. Sauer, and K. K. Mandadapu,Arbitrary LagrangianEulerian finite element method for curved and deforming surfaces: I. General theory and application to fluid interfaces, J. Comput. Phys.407(2020), 109253, 49. · Zbl 07504720
[89] M. Samavaki and J. Tuomela,Navier-Stokes equations on Riemannian manifolds, J. Geom. Phys.148(2020), 103543, 15. · Zbl 1434.53082
[90] M. Schatzman,On the eigenvalues of the Laplace operator on a thin set with Neumann boundary conditions, Appl. Anal.61(1996), 293-306. · Zbl 0865.35098
[91] L. E. Scriven,Dynamics of a fluid interface equation of motion for Newtonian surface fluids, Chemical Engineering Science12(1960), 98-108.
[92] Y. Shimizu,Green’s function for the Laplace-Beltrami operator on surfaces with a non-trivial Killing vector field and its application to potential flows, arXiv:1810.09523.
[93] J. C. Slattery, L. Sagis, and E.-S. Oh,Interfacial transport phenomena, 2nd ed., Springer, New York, 2007. · Zbl 1116.76001
[94] V. A. Solonnikov and V. E. ˇSˇcadilov,On a boundary value problem for a stationary system of Navier-Stokes equations, Proc. Steklov Inst. Math.125(1973), 186-199. · Zbl 0313.35063
[95] H.Sohr,TheNavier-Stokesequations,ModernBirkh¨auserClassics, Birkh¨auser/Springer Basel AG, Basel, 2001. An elementary functional analytic approach; [2013 reprint of the 2001 original] [MR1928881]. · Zbl 0983.35004
[96] M. Spivak,A comprehensive introduction to differential geometry. Vol. V, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. · Zbl 0439.53002
[97] M. E. Taylor,Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations17(1992), 1407-1456. · Zbl 0771.35047
[98] R. Temam,Navier-Stokes equations, Revised edition, Studies in Mathematics and its Applications, vol. 2, North-Holland Publishing Co., Amsterdam-New York, 1979. Theory and numerical analysis; With an appendix by F. Thomasset. · Zbl 0426.35003
[99] R. Temam and M. Ziane,Navier-Stokes equations in three-dimensional thin domains with various boundary conditions, Adv. Differential Equations1(1996), 499-546. · Zbl 0864.35083
[100] R. Temam and M. Ziane,Navier-Stokes equations in thin spherical domains, Optimization methods in partial differential equations (South Hadley, MA, 1996), Contemp. Math., vol. 209, Amer. Math. Soc., Providence, RI, 1997, pp. 281-314. · Zbl 0891.35119
[101] R. Temam and S. H. Wang,Inertial forms of Navier-Stokes equations on the sphere, J. Funct. Anal.117(1993), 215-242. · Zbl 0801.35109
[102] A. Torres-S´anchez, D. Santos-Oliv´an, and M. Arroyo,Approximation of tensor fields on surfaces of arbitrary topology based on local Monge parametrizations, J. Comput. Phys.405(2020), 109168, 14. · Zbl 1453.65345
[103] R. Verf¨urth,Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition, Numer. Math.50(1987), 697-721. · Zbl 0596.76031
[104] T. Yachimura,Two-phase eigenvalue problem on thin domains with Neumann boundary condition, Differential Integral Equations31(2018), 735-760. · Zbl 1463.35225
[105] E. Yanagida,Existence of stable stationary solutions of scalar reaction-diffusion equations in thin tubular domains, Appl. Anal.36(1990), 171-188. · Zbl 0709.35044
[106] A.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.