×

Meromorphic projective structures, grafting and the monodromy map. (English) Zbl 1468.30072

Soit \(S\) une surface orientée fermée de genre \(g \geq 2\). Une structure projective complexe marquée sur \(S\) est une structure géométrique modelée sur \(\mathbb{C}\mathbb{P}^{1}\), c’est-à-dire un atlas de cartes vers \(\mathbb{C}\mathbb{P}^{1}\) dont les transitions sont des restrictions d’éléments de \(\operatorname{PSL}_{2}(\mathbb{C})\).
Une telle structure peut être obtenue en fixant une structure projective sur \(S\) et en résolvant l’équation schwarzienne \(u'' + \frac{1}{2}qu=0\) sur \(\tilde S\), où \(q\) est une différentielle quadratique par rapport à la structure projective fixée. L’espace des structures projectives marquées \(\mathcal{P}_{g}\) forme alors un fibré sur l’espace de Teichmüller \(\mathcal{T}_{g}\) qui est affine par rapport au fibré vectoriel \(\mathcal{Q}_{g}\) des différentielles quadratiques. De plus, Thurston a montré que l’on peut obtenir les structures projectives en partant d’une surface hyperbolique et en greffant le long d’une lamination géodésique mesurée. La fonction de greffage ainsi obtenue \(\operatorname{Gr}\colon \mathcal{T}_{g} \times \mathcal{ML} \to \mathcal{P}_{g}\) est un homéomorphisme.
Le but de cet article est de généraliser ce résultat dans le cas où la différentielle quadratique \(q\) possède des pôles d’ordres supérieurs. Plus précisément, on pose \(\mathfrak{n}=(n_{1},\dots,n_{k})\) des entiers supérieurs ou égaux à \(3\). On note \(\mathcal{P}_{g}(\mathfrak{n})\) l’espace des structures projectives méromorphes marquées dont les pôles sont d’ordres \(n_{i}\). On note \(\mathcal{T}_{g}(\mathfrak{n})\) l’espace des surfaces hyperboliques marquées de genre \(g\) avec \(k\) couronnes de types \(n_{i}-2\). On peut de plus généraliser l’espace des laminations géométriques mesurées en prescrivant le comportement aux couronnes. Cet espace est noté \(\mathcal{ML} (\mathfrak{n})\).
Le résultat principal est que tous les éléments de \(\mathcal{P}_{g}(\mathfrak{n})\) peuvent être obtenu en greffant une surface de \(\mathcal{T}_{g}(\mathfrak{n})\) par un élément de \(\mathcal{ML} (\mathfrak{n})\). De plus, la fonction de greffage \(\operatorname{Gr}\colon \mathcal{T}_{g}(\mathfrak{n}) \times \mathcal{ML}(\mathfrak{n}) \to \mathcal{P}_{g}(\mathfrak{n})\) est un homéomorphisme.
De plus, les auteurs étudient la monodromie dans ce contexte et le cas du genre \(0\) en détail.

MSC:

30F30 Differentials on Riemann surfaces
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
34M03 Linear ordinary differential equations and systems in the complex domain

References:

[1] Allegretti, D. G.L.; Bridgeland, T., The monodromy of meromorphic projective structures, Trans. Am. Math. Soc., 373, 9, 6321-6367 (2020), MR 4155179 · Zbl 1461.30099
[2] Alessandrini, D.; Liu, L.; Papadopoulos, A.; Su, W., The horofunction compactification of Teichmüller spaces of surfaces with boundary, Topol. Appl., 208, 160-191 (2016) · Zbl 1343.32008
[3] Fernández Arias, A., On the meromorphic functions in the punctured plane without multiple values, Complex Anal. Oper. Theory, 11, 8, 1653-1668 (2017) · Zbl 1386.30031
[4] Baba, S., 2π-grafting and complex projective structures with generic holonomy, Geom. Funct. Anal., 27, 5, 1017-1069 (2017) · Zbl 1401.57027
[5] Baba, S., On Thurston’s parametrization of \(\mathbb{C} P^1\)-structures, (Ohshika, K.; Papadopoulos, A., the Tradition of Thurston (2020), Springer)
[6] Bakken, I., A multiparameter eigenvalue problem in the complex plane, Am. J. Math., 99, 5, 1015-1044 (1977) · Zbl 0379.34021
[7] Bestvina, M.; Bromberg, K.; Fujiwara, K.; Souto, J., Shearing coordinates and convexity of length functions on Teichmüller space, Am. J. Math., 135, 6, 1449-1476 (2013) · Zbl 1286.30032
[8] Bainbridge, M.; Chen, D.; Gendron, Q.; Grushevsky, S.; Möller, M., Strata of k-differentials, Algebr. Geom., 6, 2, 196-233 (2019) · Zbl 1440.14148
[9] Baba, S.; Gupta, S., Holonomy map fibers of \(\mathbb{C} P^1\)-structures in moduli space, J. Topol., 8, 3, 691-710 (2015) · Zbl 1331.30037
[10] Balser, W.; Jurkat, W. B.; Lutz, D. A., Birkhoff invariants and Stokes’ multipliers for meromorphic linear differential equations, J. Math. Anal. Appl., 71, 1, 48-94 (1979) · Zbl 0415.34008
[11] Boalch, P. P., Geometry and braiding of Stokes data; fission and wild character varieties, Ann. Math. (2), 179, 1, 301-365 (2014) · Zbl 1283.53075
[12] Biswas, K.; Perez-Marco, R., Log-Riemann surfaces, preprint
[13] Canary, R. D.; Epstein, D. B.A.; Green, P. L., Notes on notes of Thurston [mr0903850], Fundamentals of hyperbolic geometry: selected expositions, London Math. Soc. Lecture Note Ser., vol. 328, 1-115 (2006), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, With a new foreword by Canary
[14] Chekhov, L. O.; Mazzocco, M.; Rubtsov, V. N., Painlevé monodromy manifolds, decorated character varieties, and cluster algebras, Int. Math. Res. Not., 24, 7639-7691 (2017) · Zbl 1405.30044
[15] Danciger, J., A geometric transition from hyperbolic to anti-de Sitter geometry, Geom. Topol., 17, 5, 3077-3134 (2013) · Zbl 1287.57020
[16] Dumas, D., Complex projective structures, (Handbook of Teichmüller theory, Vol. II. Handbook of Teichmüller theory, Vol. II, IRMA Lect. Math. Theor. Phys., vol. 13 (2009), Eur. Math. Soc.: Eur. Math. Soc. Zürich), 455-508 · Zbl 1196.30039
[17] Earle, C. J., On variation of projective structures, Riemann surfaces and related topics, (Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978). Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann.. Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978). Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann., of Math. Stud., vol. 97 (1981), Princeton Univ. Press: Princeton Univ. Press Princeton, N.J.), 87-99 · Zbl 0474.30036
[18] Epstein, D. B.A.; Marden, A., Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, Analytical and geometric aspects of hyperbolic space, (London Math. Soc. Lecture Note Ser., vol. 111. London Math. Soc. Lecture Note Ser., vol. 111, Coventry/Durham, 1984 (1987), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 113-253 · Zbl 0612.57010
[19] Fock, V.; Goncharov, A., Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci., 103, 1-211 (2006) · Zbl 1099.14025
[20] Fathi, A.; Laudenbach, F.; Poénaru, V., Thurston’s Work on Surfaces, Mathematical Notes, vol. 48 (2012), Princeton University Press: Princeton University Press Princeton, NJ, Translated from the 1979 French original by Djun M. Kim and Dan Margalit · Zbl 1244.57005
[21] Gallo, D.; Kapovich, M.; Marden, A., The monodromy groups of Schwarzian equations on closed Riemann surfaces, Ann. Math. (2), 151, 2, 625-704 (2000) · Zbl 0977.30028
[22] Goldman, W. M., Convex real projective structures on compact surfaces, J. Differ. Geom., 31, 3, 297-326 (1990)
[23] Gupta, S., Harmonic maps and wild Teichmüller spaces, J. Topol. Anal. (2019)
[24] Gupta, S.; Wolf, M., Meromorphic quadratic differentials and measured foliations on a Riemann surface, Math. Ann., 373, 1-2, 73-118 (2019) · Zbl 1423.30030
[25] Hejhal, D. A., Monodromy groups and linearly polymorphic functions, Acta Math., 135, 1, 1-55 (1975) · Zbl 0333.34002
[26] Hille, E., Lectures on ordinary differential equations (1969), Addison-Wesley Publ. Co.: Addison-Wesley Publ. Co. Reading, Mass.-London-Don Mills, Ont · Zbl 0179.40301
[27] Hsieh, P.; Sibuya, Y., On the asymptotic integration of second order linear ordinary differential equations with polynomial coefficients, J. Math. Anal. Appl., 16, 84-103 (1966) · Zbl 0161.05803
[28] Hsieh, P.-F.; Sibuya, Y., Basic Theory of Ordinary Differential Equations, Universitext (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0924.34001
[29] Hubbard, J. H., The monodromy of projective structures, Riemann surfaces and related topics, (Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978). Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud., vol. 97 (1981), Princeton Univ. Press: Princeton Univ. Press Princeton, N.J.), 257-275 · Zbl 0475.32008
[30] Kapovich, M., Hyperbolic Manifolds and Discrete Groups, Progress in Mathematics, vol. 183 (2001), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA · Zbl 0958.57001
[31] Kulkarni, R. S.; Pinkall, U., A canonical metric for Möbius structures and its applications, Math. Z., 216, 1, 89-129 (1994) · Zbl 0813.53022
[32] Kamishima, Y.; Tan, S. P., Deformation spaces on geometric structures, (Aspects of low-dimensional manifolds. Aspects of low-dimensional manifolds, Adv. Stud. Pure Math., vol. 20 (1992), Kinokuniya: Kinokuniya Tokyo), 263-299 · Zbl 0798.53030
[33] Luo, F., Monodromy groups of projective structures on punctured surfaces, Invent. Math., 111, 3, 541-555 (1993) · Zbl 0778.30043
[34] Mulase, M.; Penkava, M., Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over \(\overline{\mathbf{Q}} \), Asian J. Math., 2, 4, 875-919 (1998), Mikio Sato: a great Japanese mathematician of the twentieth century · Zbl 0964.30023
[35] Nevanlinna, R., Über Riemannsche Flächen mit endlich vielen Windungspunkten, Acta Math., 58, 1, 295-373 (1932) · JFM 58.0369.01
[36] Nevanlinna, R., Analytic Functions, Translated from the Second German Edition by Phillip Emig, Die Grundlehren der mathematischen Wissenschaften, vol. 162 (1970), Springer-Verlag: Springer-Verlag New York-Berlin · Zbl 0199.12501
[37] Palesi, F., Introduction to positive representations and Fock-Goncharov coordinates, Lecture notes (2013)
[38] Penner, R. C., Decorated Teichmüller theory of bordered surfaces, Commun. Anal. Geom., 12, 4, 793-820 (2004) · Zbl 1072.32008
[39] Penner, R. C.; Harer, J. L., Combinatorics of Train Tracks, Annals of Mathematics Studies, vol. 125 (1992), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0765.57001
[40] Sibuya, Y., Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient, North-Holland Mathematics Studies, vol. 18 (1975), North-Holland Publishing Co., American Elsevier Publishing Co., Inc.: North-Holland Publishing Co., American Elsevier Publishing Co., Inc. Amsterdam-Oxford, New York · Zbl 0322.34006
[41] Strebel, K., Quadratic Differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5 (1984), Springer-Verlag · Zbl 0547.30001
[42] Tanigawa, H., Grafting, harmonic maps and projective structures on surfaces, J. Differ. Geom., 47, 3, 399-419 (1997) · Zbl 0955.32012
[43] Thurston, W. P., The Geometry and Topology of 3-Manifolds, Princeton University Notes (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.