×

Vertices for Iwahori-Hecke algebras and the Dipper-Du conjecture. (English) Zbl 1468.20026

Summary: Let \(\mathcal{H}_n\) denote the Iwahori-Hecke algebra corresponding to the symmetric group \(\mathfrak{S}_n\). We set up a Green correspondence for bimodules of these Hecke algebras, and a Brauer correspondence between their blocks. We examine Specht modules for\(\mathcal{H}_n\) and compute the vertex of certain Specht modules, before using this to give a complete classification of the vertices of blocks of \(\mathcal{H}_n\) in any characteristic. Finally, we apply this classification to resolve the Dipper-Du conjecture about the structure of vertices of indecomposable \(\mathcal{H}_n\)-modules.

MSC:

20C30 Representations of finite symmetric groups
16G99 Representation theory of associative rings and algebras
20C08 Hecke algebras and their representations

References:

[1] J. L.Alperin, Local representation theory, Cambridge Studies in Advanced Mathematics 11 (Cambridge University Press, Cambridge, 1986). · Zbl 0593.20003
[2] T. M.Apostol, ‘Resultants of cyclotomic polynomials’, Proc. Lond. Math. Soc.24 (1970) 457-462. · Zbl 0188.34002
[3] H.Cartan and S.Eilenberg, Homological algebra, Princeton Mathematical Series 19 (Princeton University Press, Princeton, NJ, 1956). · Zbl 0075.24305
[4] C. W.Curtis and I.Reiner, Methods of representation theory, Wiley-Interscience Series 1 (John Wiley and Sons, Hoboken, NJ, 1981). · Zbl 0469.20001
[5] R.Dipper and J.Du, ‘Trivial and alternating source modules of Hecke algebras’, Proc. Lond. Math. Soc.66 (1993) 479-506. · Zbl 0802.20013
[6] R.Dipper and G.James, ‘Blocks and idempotents of Hecke algebras of general linear groups’, Proc. Lond. Math Soc.54 (1987) 57-82. · Zbl 0615.20009
[7] J.Du, ‘The Green correspondence for the representation of Hecke algebras of type \(A_{r - 1}\)’, Trans. Amer. Math. Soc.329 (1992) 273-287. · Zbl 0748.20004
[8] K.Erdmann and D. K.Nakano, ‘Representation type of Hecke algebras of type \(A\)’, Trans. Amer. Math. Soc.354 (2002) 275-285. · Zbl 0990.16019
[9] D. M.Goldschmidt, Group characters, symmetric functions and the Hecke algebra, University Lecture Series 4 (American Mathematical Society, Providence, RI, 1993). · Zbl 0792.20005
[10] J. J.Graham and G. I.Lehrer, ‘Cellular algebras’, Invent. Math.123 (1996) 1-34. · Zbl 0853.20029
[11] J.Hu, ‘A counter-example of Dipper-Du’s conjecture’, Arch. Math. (Basel)78 (2002) 449-453. · Zbl 1057.20002
[12] J. E.Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics 29 (Cambridge University Press, Cambridge, 1990). · Zbl 0725.20028
[13] G.James and A.Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications 16 (Addison-Wesley, Boston, MA, 1981). · Zbl 0491.20010
[14] L.Jones, ‘Centers of generic Hecke algebras’, Trans. Amer. Math. Soc.317 (1990) 153-192.
[15] A.Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group, University Lecture Series 15 (American Mathematical Society, Providence, RI, 1999). · Zbl 0940.20018
[16] T.Nagell, ‘Contributions à la théorie des corps et des polynomes cyclotomiques’, Ark. Mat.5 (1964) 153-192. · Zbl 0119.27602
[17] B. E.Sagan, The symmetric group: representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics 203 (Springer, New York, NY, 2001). · Zbl 0964.05070
[18] S.Schmider, ‘Hecke algebras of type A: Auslander-Reiten quivers and branching rules’, PhD Thesis, TU Kaiserslautern, 2016.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.