×

An inductive machinery for representations of categories with shift functors. (English) Zbl 1468.16029

Summary: We describe an inductive machinery to prove various properties of representations of a category equipped with a generic shift functor. Specifically, we show that if a property (P) of representations of the category behaves well under the generic shift functor, then all finitely generated representations of the category have the property (P). In this way, we obtain simple criteria for properties such as Noetherianity, finiteness of Castelnuovo-Mumford regularity, and polynomial growth of dimension to hold. This gives a systemetic and uniform proof of such properties for representations of the categories \( \mathcal {FI}_G\) and \( \mathcal {OI}_G\) which appear in representation stability theory.

MSC:

16G99 Representation theory of associative rings and algebras
16E30 Homological functors on modules (Tor, Ext, etc.) in associative algebras
16P40 Noetherian rings and modules (associative rings and algebras)

References:

[1] Church, Thomas; Ellenberg, Jordan S., Homology of FI-modules, Geom. Topol., 21, 4, 2373-2418 (2017) · Zbl 1371.18012 · doi:10.2140/gt.2017.21.2373
[2] Church, Thomas; Ellenberg, Jordan S.; Farb, Benson, FI-modules and stability for representations of symmetric groups, Duke Math. J., 164, 9, 1833-1910 (2015) · Zbl 1339.55004 · doi:10.1215/00127094-3120274
[3] Church, Thomas; Ellenberg, Jordan S.; Farb, Benson; Nagpal, Rohit, FI-modules over Noetherian rings, Geom. Topol., 18, 5, 2951-2984 (2014) · Zbl 1344.20016 · doi:10.2140/gt.2014.18.2951
[4] Gadish, Nir, Categories of FI type: a unified approach to generalizing representation stability and character polynomials, J. Algebra, 480, 450-486 (2017) · Zbl 1391.20010 · doi:10.1016/j.jalgebra.2017.03.010
[5] Gan, Wee Liang, A long exact sequence for homology of FI-modules, New York J. Math., 22, 1487-1502 (2016) · Zbl 1358.18006
[6] Gan, Wee Liang, On the negative-one shift functor for FI-modules, J. Pure Appl. Algebra, 221, 5, 1242-1248 (2017) · Zbl 1359.18001 · doi:10.1016/j.jpaa.2016.09.010
[7] Gan, Wee Liang; Li, Liping, Noetherian property of infinite EI categories, New York J. Math., 21, 369-382 (2015) · Zbl 1327.18003
[8] Gan, Wee Liang; Li, Liping, Koszulity of directed categories in representation stability theory, J. Algebra, 501, 88-129 (2018) · Zbl 1401.16030 · doi:10.1016/j.jalgebra.2017.12.027
[9] GL2 Wee Liang Gan and Liping Li, Asymptotic behaviors of representations of graded categories with inductive functors, J. Pure Appl. Algebra 223 (2019), 188-217, arXiv:1705.00882. · Zbl 1443.13014
[10] Li, Liping, Homological degrees of representations of categories with shift functors, Trans. Amer. Math. Soc., 370, 4, 2563-2587 (2018) · Zbl 1439.16006 · doi:10.1090/tran/7041
[11] Li, Liping, Upper bounds of homological invariants of \(FI_G\)-modules, Arch. Math. (Basel), 107, 3, 201-211 (2016) · Zbl 1395.16003 · doi:10.1007/s00013-016-0921-3
[12] L3 Liping Li, Two homological proofs of the Noetherianity of \(FI_G\), arXiv:1603.04552.
[13] LR Liping Li and Eric Ramos, Depth and the local cohomology of \(FI_G\)-modules, Adv. Math. 329 (2018), 704-741, arXiv:1602.04405. · Zbl 1398.13016
[14] Li, Liping; Yu, Nina, Filtrations and homological degrees of FI-modules, J. Algebra, 472, 369-398 (2017) · Zbl 1371.13015 · doi:10.1016/j.jalgebra.2016.11.019
[15] Nagpal, Rohit, FI-modules and the cohomology of modular representations of symmetric groups, 91 pp. (2015), ProQuest LLC, Ann Arbor, MI
[16] Ramos, Eric, Homological Invariants of FI-Modules and FIG-Modules, 187 pp. (2017), ProQuest LLC, Ann Arbor, MI
[17] Ramos, Eric, On the degree-wise coherence of \(\mathcal{FI}_G\)-modules, New York J. Math., 23, 873-895 (2017) · Zbl 1377.16010
[18] Rotman, Joseph J., An introduction to homological algebra, Universitext, xiv+709 pp. (2009), Springer, New York · Zbl 1157.18001 · doi:10.1007/b98977
[19] Sam, Steven V.; Snowden, Andrew, Gr\"obner methods for representations of combinatorial categories, J. Amer. Math. Soc., 30, 1, 159-203 (2017) · Zbl 1347.05010 · doi:10.1090/jams/859
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.