×

Versality, bounds of global Tjurina numbers and logarithmic vector fields along hypersurfaces with isolated singularities. (English) Zbl 1468.14014

Fernández de Bobadilla, Javier (ed.) et al., Singularities and their interaction with geometry and low dimensional topology. In honor of András Némethi on the occasion of his 60th birthday. Selected papers based on the presentations at the conference “Némethi60: geometry and topology of singularities”, Budapest, Hungary, May 27–31, 2019. Basel: Birkhäuser/Springer. Trends Math., 1-12 (2021).
Summary: We recall first the relations between the syzygies of the Jacobian ideal of the defining equation for a projective hypersurface \(V\) with isolated singularities and the versality properties of \(V\), as studied by A. A. Du Plessis and C. T. C. Wall [Math. Proc. Camb. Philos. Soc. 126, No. 2, 259–266 (1999; Zbl 0926.14012); J. Algebr. Geom. 9, No. 2, 309–322 (2000; Zbl 1006.14011)]. Then we show how the bounds on the global Tjurina number of \(V\) obtained by du Plessis and Wall lead to substantial improvements of our previous results on the stability of the reflexive sheaf \(T\langle V\rangle\) of logarithmic vector fields along \(V\), and on the Torelli property in the sense of I. Dolgachev and M. Kapranov [Duke Math. J. 71, No. 3, 633–664 (1993; Zbl 0804.14007)] of \(V\).
For the entire collection see [Zbl 1467.14002].

MSC:

14C34 Torelli problem
14J17 Singularities of surfaces or higher-dimensional varieties
14B05 Singularities in algebraic geometry
14H20 Singularities of curves, local rings
32S05 Local complex singularities
13D02 Syzygies, resolutions, complexes and commutative rings
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials

References:

[1] Abe, T., Dimca, A., Sticlaru, G.: Addition-deletion results for the minimal degree of logarithmic derivations of arrangements. J. Algebraic Combin. (2019). https://doi.org/10.1007/s10801-020-00986-9
[2] Bodnár, J., Némethi, A.: Lattice cohomology and rational cuspidal curves. Math. Res. Lett. 23, 339-375 (2016) · Zbl 1353.32028 · doi:10.4310/MRL.2016.v23.n2.a3
[3] Choudary, A.D.R., Dimca, A.: Koszul complexes and hypersurface singularities. Proc. Am. Math. Soc. 121, 1009-1016 (1994) · Zbl 0814.14037 · doi:10.1090/S0002-9939-1994-1189539-9
[4] Dimca, A.: Syzygies of Jacobian ideals and defects of linear systems. Bull. Math. Soc. Sci. Math. Roumanie Tome 56(104), 191-203 (2013) · Zbl 1299.14001
[5] Dimca, A.: Freeness versus maximal degree of the singular subscheme for surfaces in \(\mathbb{P}^3\). Geom. Dedicata 183, 101-112 (2016) · Zbl 1365.14061 · doi:10.1007/s10711-016-0148-2
[6] Dimca, A.: Freeness versus maximal global Tjurina number for plane curves. Math. Proc. Camb. Philos. Soc. 163, 161-172 (2017) · Zbl 1387.14080 · doi:10.1017/S0305004116000803
[7] Dimca, A.: Jacobian syzygies, stable reflexive sheaves, and Torelli properties for projective hypersurfaces with isolated singularities. Algebr. Geom. 4, 290-303 (2017) · Zbl 1374.14009 · doi:10.14231/AG-2017-016
[8] Dimca, A., Saito, M.: Generalization of theorems of Griffiths and Steenbrink to hypersurfaces with ordinary double points. Bull. Math. Soc. Sci. Math. Roum. 60(108), 351-371 (2017) · Zbl 1399.32019
[9] Dimca, A., Sernesi, E.: Syzygies and logarithmic vector fields along plane curves. J. Ecole Polytech. Math. 1, 247-267 (2014) · Zbl 1327.14049
[10] Dimca, A., Sticlaru, G.: On the syzygies and Alexander polynomials of nodal hypersurfaces. Math. Nachr. 285, 2120-2128 (2012) · Zbl 1435.14010 · doi:10.1002/mana.201100326
[11] Dimca, A., Sticlaru, G.: On the exponents of free and nearly free projective plane curves. Rev. Mat. Complut. 30, 259-268 (2017) · Zbl 1453.14086 · doi:10.1007/s13163-017-0228-3
[12] Dimca, A., Sticlaru, G.: Free divisors and rational cuspidal plane curves. Math. Res. Lett. 24, 1023-1042 (2017) · Zbl 1390.14083 · doi:10.4310/MRL.2017.v24.n4.a5
[13] Dimca, A., Sticlaru, G.: Free and nearly free curves vs. rational cuspidal plane curves. Publ. RIMS Kyoto Univ. 54, 163-179 (2018) · Zbl 1391.14057
[14] Dimca, A., Sticlaru, G.: On the freeness of rational cuspidal plane curves. Moscow Math. J. 18, 659-666 (2018) · Zbl 1420.14064 · doi:10.17323/1609-4514-2018-18-4-659-666
[15] Dimca, A., Sticlaru, G.: Plane curves with three syzygies, minimal Tjurina curves, and nearly cuspidal curves. Geom. Dedicata. 207, 29-49 (2020). https://doi.org/10.1007/s10711-019-00485-7 · Zbl 1505.14073 · doi:10.1007/s10711-019-00485-7
[16] Dimca, A., Sticlaru, G.: Plane curves with maximal global Tjurina numbers. arXiv: 1901.05915 · Zbl 1505.14073
[17] Dolgachev, I., Kapranov, M.: Arrangements of hyperplanes and vector bundles on \(\mathbb{P}^n\). Duke Math. J. 71, 633-664 (1993) · Zbl 0804.14007
[18] du Plessis, A.A.: Versality properties of projective hypersurfaces. In: Real and Complex Singularities, Trends in Mathematics, pp. 289-298. Birkhäuser, Basel (2006) · Zbl 1121.14031
[19] du Plessis, A.A., Wall, C.T.C.: Application of the theory of the discriminant to highly singular plane curves. Math. Proc. Camb. Philos. Soc. 126, 256-266 (1999) · Zbl 0926.14012 · doi:10.1017/S0305004198003302
[20] du Plessis, A.A., Wall, C.T.C.: Singular hypersurfaces, versality and Gorenstein algebras. J. Algebr. Geom. 9, 309-322 (2000) · Zbl 1006.14011
[21] du Plessis, A.A., Wall, C.T.C.: Discriminants, Vector Fields and Singular Hypersurfaces. New Developments in Singularity Theory (Cambridge, 2000), pp. 351-377, NATO Sci. Ser. II Math. Phys. Chem., vol. 21. Kluwer, Dordrecht (2001)
[22] Eisenbud, D., Green, M., Harris, J.: Cayley Bacharach theorems and conjectures. Bull. Am. Math. Soc. 33, 295-324 (1996) · Zbl 0871.14024 · doi:10.1090/S0273-0979-96-00666-0
[23] Ellia, Ph.: Quasi complete intersections and global Tjurina number of plane curves. J. Pure Appl. Algebra 224, 423-431 (2020) · Zbl 1423.14211 · doi:10.1016/j.jpaa.2019.05.014
[24] Faenzi, D., Vallès, J.: Logarithmic bundles and line arrangements, an approach via the standard construction. J. Lond. Math. Soc. 90, 675-694 (2014) · Zbl 1308.52021 · doi:10.1112/jlms/jdu046
[25] Fernandez de Bobadilla, J., Luengo, I., Melle-Hernandez, A., Némethi, A.: On rational cuspidal projective plane curves. Proc. Lond. Math. Soc. (3) 92, 99-138 (2006) · Zbl 1115.14021
[26] Fernandez de Bobadilla, J., Luengo, I., Melle-Hernandez, A., Némethi, A.: Classification of rational unicuspidal projective curves whose singularities have one Puiseux pair. In: Real and Complex Singularities Sao Carlos 2004, Trends in Mathematics, pp. 31-45. Birkhauser, Basel (2006) · Zbl 1120.14019
[27] Greuel, G.-M., Lossen, C.: Equianalytic and equisingular families of curves on surfaces. Manuscripta Math. 91, 323-342 (1996) · Zbl 0874.14021 · doi:10.1007/BF02567958
[28] Greuel, G.-M., Lossen, C., Shustin, E.: Singular Algebraic Curves, with an Appendix by O. Viro. Springer, Berlin (2018) · Zbl 1411.14001
[29] Marchesi, S., Vallès, J.: Nearly free curves and arrangements: a vector bundle point of view. Math. Proc. Camb. Philos. Soc. (2019). https://doi.org/10.1017/S0305004119000318 · Zbl 1476.14076
[30] Sernesi, E.: The local cohomology of the Jacobian ring. Doc. Math. 19, 541-565 (2014) · Zbl 1314.14089
[31] Shustin, E.: Versal deformations in the space of planar curves of fixed degree. Funct. Anal. Appl. 21, 82-84 (1987) · Zbl 0627.14023 · doi:10.1007/BF01077998
[32] Shustin, E., Tyomkin, I.: Versal deformation of algebraic hypersurfaces with isolated singularities. Math. Ann. 313, 297-314 (1999) · Zbl 0951.14022 · doi:10.1007/s002080050262
[33] Ueda, K., Yoshinaga, M.: Logarithmic vector fields along smooth divisors in projective spaces. Hokkaido Math. J. 38, 409-415 (2009) · Zbl 1180.14012 · doi:10.14492/hokmj/1258553970
[34] Wang, Z.: On homogeneous polynomials determined by their Jacobian ideal. Manuscripta Math. 146, 559-574 (2015) · Zbl 1329.14089 · doi:10.1007/s00229-014-0703-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.