×

Fourier expansions at cusps. (English) Zbl 1468.11099

In the paper under review, the authors concern the fields generated by the Fourier coefficients of modular forms at arbitrary cusps.
The main tools that are used in the paper are the action of GL\(_2^+ (\mathbb{Q})\) via the slash-operator and the action of Aut\((\mathbb{C})\) on the Fourier coefficients of a modular form and it is followed Shimura’s ideas and they give a new proof of Shimura’s formula for the action of Aut\((\mathbb{C})\) on \(f \mid g\) by using a theorem of Khuri-Makdisi on products of Eisenstein series.
They prove that these fields are contained in certain cyclotomic extensions of the field generated by the Fourier coefficients at infinity. They also show that this bound is tight in the case of newforms with trivial Nebentypus.
The paper concludes with three open research questions.

MSC:

11F11 Holomorphic modular forms of integral weight
11F30 Fourier coefficients of automorphic forms
11R18 Cyclotomic extensions

References:

[1] Atkin, AOL; Li, WCW, Twists of newforms and pseudo-eigenvalues of \(W\)-operators, Invent. Math., 48, 3, 221-243 (1978) · Zbl 0369.10016 · doi:10.1007/BF01390245
[2] Borisov, LA; Gunnells, PE, Toric modular forms of higher weight, J. Reine Angew. Math., 560, 43-64 (2003) · Zbl 1124.11309
[3] Brunault, F., Régulateurs modulaires explicites via la méthode de Rogers-Zudilin, Compos. Math., 153, 1119-1152 (2017) · Zbl 1386.19010 · doi:10.1112/S0010437X17007023
[4] Brunault, F., Neururer, M.: Note on Fourier expansions at cusps. https://arxiv.org/abs/1905.02946 (2019)
[5] Cohen, H.: Expansions at cusps and Petersson products in Pari/GP. Elliptic Integrals, Functions, and Modular Forms in Quantum Field Theory, Texts Monogr. Symbol. Comput. pp. 161-181. Springer, Cham (2019)
[6] Collins, D.: Numerical computation of Petersson inner products and \(q\)-expansions. Preprint, https://arxiv.org/abs/1802.09740v1 (2018)
[7] Corbett, A.; Saha, A., On the order of vanishing of newforms at cusps, Math. Res. Lett., 25, 1771-1804 (2018) · Zbl 1442.11092 · doi:10.4310/MRL.2018.v25.n6.a4
[8] Deligne, P.; Rapoport, M.; Deligne, P.; Kuijk, W., Les schémas de modules de courbes elliptiques, Modular Functions of One Variable II, 143-316 (1973), Berlin: Springer, Berlin · Zbl 0281.14010
[9] Dickson, M.; Neururer, M., Products of Eisenstein series and Fourier expansions of modular forms at cusps, J. Number Theory, 188, 137-164 (2018) · Zbl 1435.11078 · doi:10.1016/j.jnt.2017.12.013
[10] Kato, K.: \(p\)-Adic Hodge theory and values of zeta functions of modular forms. Astérisque, 295:ix, 117-290, Cohomologies \(p\)-adiques et applications arithmétiques (III) (2004) · Zbl 1142.11336
[11] Katz, NM, \(p\)-Adic interpolation of real analytic Eisenstein series, Ann. Math. (2), 104, 3, 459-571 (1976) · Zbl 0354.14007 · doi:10.2307/1970966
[12] Khuri-Makdisi, K., Moduli interpretation of Eisenstein series, Int. J. Number Theory, 8, 3, 715-748 (2012) · Zbl 1290.11078 · doi:10.1142/S1793042112500418
[13] Newman, M., Structure theorems for modular subgroups, Duke Math. J., 22, 25-32 (1955) · Zbl 0064.32702 · doi:10.1215/S0012-7094-55-02203-1
[14] Newman, M., The normalizer of certain modular subgroups, Canad. J. Math., 8, 29-31 (1956) · Zbl 0071.02501 · doi:10.4153/CJM-1956-005-5
[15] Schoeneberg, B.: Elliptic Modular Functions: An Introduction. Springer, New York-Heidelberg. Translated from the German by J. R. Smart and E. A. Schwandt, Die Grundlehren der mathematischen Wissenschaften, Band 203 (1974) · Zbl 0285.10016
[16] Shimura, G., On some arithmetic properties of modular forms of one and several variables, Ann. Math. (2), 102, 3, 491-515 (1975) · Zbl 0327.10028 · doi:10.2307/1971041
[17] Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions, vol. 11. Mathematical Society of Japan. Princeton University Press, Princeton, NJ. Reprint of the 1971 original, Kanô Memorial Lectures, 1 (1994) · Zbl 0872.11023
[18] Shimura, G., Arithmeticity in the Theory of Automorphic Forms. Mathematical Surveys and Monographs (2000), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0967.11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.