×

Stability on large non-constant steady states of semiconductor equations. (English) Zbl 1467.82098

Summary: Around the large non-constant steady state, we show the existence and uniqueness of the global solution of the three-dimensional Cauchy problem of the semiconductor equations without or with the magnetic field effect. Without the magnetic field effect, we prove that the solution converges to the non-constant steady state exponentially fast as time goes to infinity. With the magnetic field effect, the optimal algebraic time-decay rates of the lower-order derivatives of the solution are obtained. Our results manifest that the degenerate dissipation of the magnetic field slows down the decay rates of the whole solution.
©2021 American Institute of Physics

MSC:

82D37 Statistical mechanics of semiconductors
35Q81 PDEs in connection with semiconductor devices
35B35 Stability in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
78A25 Electromagnetic theory (general)
78A30 Electro- and magnetostatics
76N06 Compressible Navier-Stokes equations
Full Text: DOI

References:

[1] Alì, G., Global existence of smooth solutions of the N-dimensional Euler-Poisson model, SIAM J. Math. Anal., 35, 2, 389-422 (2003) · Zbl 1043.35109 · doi:10.1137/s0036141001393225
[2] Chen, G.-Q.; Wang, D., Convergence of shock capturing schemes for the compressible Euler-Poisson equations, Commun. Math. Phys., 179, 2, 333-364 (1996) · Zbl 0858.76051 · doi:10.1007/bf02102592
[3] Chen, L.; Donatelli, D.; Marcati, P., Incompressible type limit analysis of a hydrodynamic model for charge-carrier transport, SIAM J. Math. Anal., 45, 3, 915-933 (2013) · Zbl 1391.35325 · doi:10.1137/120876630
[4] Duan, R. J.; Ruan, L. Z.; Zhu, C. J., Optimal decay rates to conservation laws with diffusion-type terms of regularity-gain and regularity-loss, Math. Models Methods Appl. Sci., 22, 7, 1250012 (2012) · Zbl 1241.35133 · doi:10.1142/s0218202512500121
[5] Guo, Y.; Strauss, W. A., Stability of semiconductor states with insulating and contact boundary conditions, Arch. Ration. Mech. Anal., 179, 1, 1-30 (2006) · Zbl 1148.82030 · doi:10.1007/s00205-005-0369-2
[6] Guo, Y.; Wang, Y. J., Decay of dissipative equations and negative Sobolev spaces, Commun. Partial Differ. Equations, 37, 12, 2165-2208 (2012) · Zbl 1258.35157 · doi:10.1080/03605302.2012.696296
[7] Hsiao, L.; Ju, Q. C.; Wang, S., The asymptotic behaviour of global smooth solutions to the multi-dimensional hydrodynamic model for semiconductors, Math. Methods Appl. Sci., 26, 14, 1187-1210 (2003) · Zbl 1027.35071 · doi:10.1002/mma.410
[8] Hsiao, L.; Markowich, P. A.; Wang, S., The asymptotic behavior of globally smooth solutions of the multidimensional isentropic hydrodynamic model for semiconductors, J. Differ. Equations, 192, 1, 111-133 (2003) · Zbl 1045.35088 · doi:10.1016/s0022-0396(03)00063-9
[9] Hsiao, L.; Wang, S.; Zhao, H. J., Asymptotic behaviour of global smooth solutions to the multidimensional hydrodynamic model for semiconductors, Math. Methods Appl. Sci., 25, 8, 663-700 (2002) · Zbl 1010.35071 · doi:10.1002/mma.307
[10] Huang, F. M.; Mei, M.; Wang, Y.; Yu, H. M., Asymptotic convergence to planar stationary waves for multi-dimensional unipolar hydrodynamic model of semiconductors, J. Differ. Equations, 251, 4-5, 1305-1331 (2011) · Zbl 1228.35177 · doi:10.1016/j.jde.2011.04.007
[11] Huang, F. M.; Mei, M.; Wang, Y.; Yu, H. M., Asymptotic convergence to stationary waves for unipolar hydrodynamic model of semiconductors, SIAM J. Math. Anal., 43, 1, 411-429 (2011) · Zbl 1227.35063 · doi:10.1137/100793025
[12] Ju, Q. C.; Li, Y., Asymptotic limits of the full Navier-Stokes-Fourier-Poisson system, J. Differen. Equations, 254, 6, 2587-2602 (2013) · Zbl 1258.35158 · doi:10.1016/j.jde.2012.12.016
[13] Jüngel, A., Quasi-hydrodynamic semiconductor equations, Number V. 41 in Progress in Nonlinear Differential Equations and Their Applications (2001), Birkhäuser Verlag: Birkhäuser Verlag, Basel, Boston · Zbl 0969.35001
[14] Li, H.; Markowich, P.; Mei, M., Asymptotic behaviour of solutions of the hydrodynamic model of semiconductors, Proc. R. Soc. Edinburgh, Sect. A, 132, 2, 359-378 (2002) · Zbl 1119.35310 · doi:10.1017/s0308210500001670
[15] Li, H. L.; Matsumura, A.; Zhang, G. J., Optimal decay rate of the compressible Navier-Stokes-Poisson system in \(\mathbb{R}^3\), Arch. Ration. Mech. Anal., 196, 2, 681-713 (2010) · Zbl 1205.35201 · doi:10.1007/s00205-009-0255-4
[16] Li, Y. P., Global existence and asymptotic behavior for a multidimensional nonisentropic hydrodynamic semiconductor model with the heat source, J. Differ. Equations, 225, 1, 134-167 (2006) · Zbl 1093.76066 · doi:10.1016/j.jde.2006.01.001
[17] Luo, T.; Natalini, R.; Xin, Z. P., Large time behavior of the solutions to a hydrodynamic model for semiconductors, SIAM J. Appl. Math., 59, 3, 810-830 (1998) · Zbl 0936.35111 · doi:10.1137/s0036139996312168
[18] Markowich, P. A.; Ringhofer, C. A.; Schmeiser, C., Semiconductor Equations (1990), Springer-Verlag: Springer-Verlag, Vienna · Zbl 0765.35001
[19] Matsumura, A.; Nishida, T., The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Jpn. Acad. Ser. A Math. Sci., 55, 9, 337-342 (1979) · Zbl 0447.76053 · doi:10.3792/pjaa.55.337
[20] Matsumura, A.; Nishida, T., The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20, 1, 67-104 (1980) · Zbl 0429.76040 · doi:10.1215/kjm/1250522322
[21] Nirenberg, L., On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13, 115-162 (1959) · Zbl 0088.07601
[22] Nishibata, S.; Suzuki, M., Asymptotic stability of a stationary solution to a thermal hydrodynamic model for semiconductors, Arch. Ration. Mech. Anal., 192, 2, 187-215 (2009) · Zbl 1166.82020 · doi:10.1007/s00205-008-0129-1
[23] Ponce, G., Global existence of small solutions to a class of nonlinear evolution equations, Nonlinear Anal., 9, 5, 399-418 (1985) · Zbl 0576.35023 · doi:10.1016/0362-546x(85)90001-x
[24] Sohinger, V.; Strain, R. M., The Boltzmann equation, Besov spaces, and optimal time decay rates in \(\mathbb{R}^3\), Adv. Math., 261, 274-332 (2014) · Zbl 1293.35195 · doi:10.1016/j.aim.2014.04.012
[25] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (1970), Princeton University Press: Princeton University Press, Princeton, NJ · Zbl 0207.13501
[26] Tan, Z.; Wang, Y. J.; Wang, Y., Stability of steady states of the Navier-Stokes-Poisson equations with non-flat doping profile, SIAM J. Math. Anal., 47, 1, 179-209 (2015) · Zbl 1326.35287 · doi:10.1137/130950069
[27] Tan, Z.; Yang, T.; Zhao, H. J.; Zou, Q. Y., Global solutions to the one-dimensional compressible Navier-Stokes-Poisson equations with large data, SIAM J. Math. Anal., 45, 2, 547-571 (2013) · Zbl 1291.35237 · doi:10.1137/120876174
[28] Wang, S.; Jiang, S., The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations, Commun. Partial Differ. Equations, 31, 4-6, 571-591 (2006) · Zbl 1137.35416 · doi:10.1080/03605300500361487
[29] Wang, W. K.; Wu, Z. G., Pointwise estimates of solution for the Navier-Stokes-Poisson equations in multi-dimensions, J. Differ. Equations, 248, 7, 1617-1636 (2010) · Zbl 1185.35177 · doi:10.1016/j.jde.2010.01.003
[30] Wang, Y. J., Decay of the Navier-Stokes-Poisson equations, J. Differ. Equations, 253, 1, 273-297 (2012) · Zbl 1239.35117 · doi:10.1016/j.jde.2012.03.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.