×

Variational asymptotic preserving scheme for the Vlasov-Poisson-Fokker-Planck system. (English) Zbl 1467.82071

Summary: We design a variational asymptotic preserving scheme for the Vlasov-Poisson-Fokker-Planck system with the high field scaling, which describes the Brownian motion of a large system of particles in a surrounding bath. Our scheme builds on an implicit-explicit framework, wherein the stiff terms coming from the collision and field effects are solved implicitly while the convection terms are solved explicitly. To treat the implicit part, we propose a variational approach by viewing it as a Wasserstein gradient flow of the relative entropy, and solve it via a proximal quasi-Newton method. In so doing we get positivity and asymptotic preservation for free. The method is also massively parallelizable and thus suitable for high dimensional problems. We further show that the convergence of our implicit solver is uniform across different scales. A suite of numerical examples are presented at the end to validate the performance of the proposed scheme.

MSC:

82C40 Kinetic theory of gases in time-dependent statistical mechanics
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
60J65 Brownian motion
82M30 Variational methods applied to problems in statistical mechanics
35Q83 Vlasov equations
35Q84 Fokker-Planck equations

References:

[1] A. Arnold, J. A. Carrillo, I. Gamba, and C.-W. Shu, Low and high field scaling limits for the Vlasov- and Wigner-Poisson-Fokker-Planck systems, Transp. Theory Stat. Phys., 30 (2001), pp. 121-153, https://doi.org/10.1081/TT-100105365. · Zbl 1106.82381
[2] J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), pp. 375-393. · Zbl 0968.76069
[3] F. Bouchut, Global weak solution of the Vlasov-Poisson system for small electrons mass, Comm. Partial Differential Equations, 16 (1991), pp. 1337-1365. · Zbl 0746.35047
[4] F. Bouchut, Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system, J. Differential Equations, 122 (1995), pp. 225-238. · Zbl 0840.35053
[5] F. Bouchut and J. Dolbeault, On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials, Differential Integral Equations, 8 (1995), pp. 487-514. · Zbl 0830.35129
[6] A. Braides, A handbook of \({\Gamma}\)-convergence, in Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 3 Elsevier, Amsterdam, 2006, pp. 101-213, https://doi.org/https://doi.org/10.1016/S1874-5733(06)80006-9. · Zbl 1195.35002
[7] C. Buet and S. Dellacherie, On the Chang and Cooper scheme applied to a linear Fokker-Planck equation, Commun. Math. Sci., 8 (2010), pp. 1079-1090. · Zbl 1208.82043
[8] S. S. Capizzano and C. Tablino-Possio, A note on algebraic multigrid methods for the discrete weighted Laplacian, Comput. Math. Appl., 60 (2010), pp. 1290-1298. · Zbl 1201.65045
[9] J. A. Carrillo, K. Craig, L. Wang, and C. Wei, Primal Dual Methods for Wasserstein Gradient Flows, preprint, arXiv:1901.08081, 2019.
[10] J. A. Carrillo and J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in \(lp\) spaces, Math. Methods Appl. Sci., 18 (1995), pp. 825-839. · Zbl 0829.35096
[11] J. A. Carrillo and J. Soler, On the Vlasov-Poisson-Fokker-Planck equations with measures in Morrey spaces as initial data, J. Math. Anal. Appl., 207 (1997), pp. 475-495. · Zbl 0876.35085
[12] J. A. Carrillo, J. Soler, and J. L. Vazquez, Asymptotic behaviour and self-similarity for the three dimensional Vlasov-Poisson-Fokker-Planck system, J. Funct. Anal., 141 (1996), pp. 99-132. · Zbl 0873.35066
[13] C. Cercignani, I. M. Gamba, J. W. Jerome, and C.-W. Shu, Device benchmark comparisons via kinetic, hydrodynamic, and high-hield models, Comput. Methods Appl. Mech. Engrg., 181 (2000), pp. 381-392. · Zbl 0966.76080
[14] Y. Cheng and J. A. Rossmanith, A class of quadrature-based moment-closure methods with application to the Vlasov-Poisson-Fokker-Planck system in the high-field limit, J. Comput. Appl. Math., 262 (2014), pp. 384-398. · Zbl 1302.76098
[15] M. Dehghan and M. Abbaszadeh, A local meshless method for solving multi-dimensional Vlasov-Poisson and Vlasov-Poisson-Fokker-Planck systems arising in plasma physics, Eng. Comput., 33 (2017), pp. 961-981.
[16] L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck equation, Comm. Pure Appl. Math., 54 (2001), pp. 1-42. · Zbl 1029.82032
[17] T. Goudon, J. Nieto, F. Poupaud, and J. Soler, Multidimensional high-field limit of the electrostatic Vlasov-Poisson-Fokker-Planck system, J. Differential Equations, 213 (2005), pp. 418-442. · Zbl 1072.35176
[18] M. P. Gualdani, S. Mischler, and C. Mouhot, Factorization of Non-Symmetric Operators and Exponential \(H\)-Theorem, Mém. Soc. Math. Fr. (N.S.) 153, Société Mathématique de France, 2018. · Zbl 1470.47066
[19] K. J. Havlak and H. D. Victory, Jr., The numerical analysis of random particle methods applied to Vlasov-Poisson Fokker-Planck kinetic equations, SIAM J. Numer. Anal., 33 (1996), pp. 291-317. · Zbl 0864.76100
[20] K. J. Havlak and H. D. Victory, Jr., On deterministic particle methods for solving Vlasov-Poisson-Fokker-Planck systems, SIAM J. Numer. Anal., 35 (1998), pp. 1473-1519. · Zbl 0911.65138
[21] M. Heida, Convergences of the squareroot approximation scheme to the Fokker-Planck operator, Math. Models Methods Appl. Sci., 28 (2018), pp. 2599-2635. · Zbl 1411.65121
[22] J. Hu, S. Jin, and Q. Li, Asymptotic-preserving schemes for multiscale hyperbolic and kinetic equations, in Handbook of Numerical Analysis, Vol. 18, Elsevier, Amsterdam, 2017, pp. 103-129. · Zbl 1366.82029
[23] S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review, Riv. Mat. Univ. Parma, 3 (2012), pp. 177-216. · Zbl 1259.82079
[24] S. Jin and L. Wang, An asymptotic preserving scheme for the Vlasov-Poisson-Fokker-Planck system in the high field regime, Acta Math. Sci., 31 (2011), pp. 2219-2232. · Zbl 1265.82006
[25] R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), pp. 1-17. · Zbl 0915.35120
[26] J. D. Lee, Y. Sun, and M. A. Saunders, Proximal Newton-type methods for minimizing composite functions, SIAM J. Optim., 24 (2014), pp. 1420-1443. · Zbl 1306.65213
[27] W. Li, J. Lu, and L. Wang, Fisher information regularization schemes for Wasserstein gradient flows, J. Comput. Phys., (2020), 109449. · Zbl 1437.65055
[28] C. Mouhot and L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19 (2006), pp. 969-998. · Zbl 1169.82306
[29] J. Nieto, F. Poupaud, and J. Soler, High-field limit for the Vlasov-Poisson-Fokker-Planck system, Arch. Ration. Mech. Anal., 158 (2001), pp. 29-59. · Zbl 1038.82068
[30] G. Peyré and M. Cuturi, Computational optimal transport, Found. Trends Mach. Learn., 11 (2019), pp. 355-607. · Zbl 1475.68011
[31] F. Poupaud, Runaway phenomena and fluid approximation under high fields in semiconductor kinetic theory, ZAMM Z. Angew. Math. Mech., 72 (1992), pp. 359-372. · Zbl 0785.76067
[32] G. Rein and J. Weckler, Generic global classical solutions of the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Differential Equations, 99 (1992), pp. 59-77. · Zbl 0810.35090
[33] F. Santambrogio, Optimal Transport for Applied Mathematicians, Progr. Nonlinear Differential Equations Appl. 87, Bikhäuser, Cham, 2015. · Zbl 1401.49002
[34] A. Schlichting and C. Seis, The Scharfetter-Gummel Scheme for Aggregation-Diffusion Equations, preprint, arXiv:2004.13981, 2020.
[35] L. L. Bonilla, J. A. Carrillo, and J. Soler, Asymptotic behavior of an initial-boundary value problem for the Vlasov-Poisson-Fokker-Planck system, SIAM J. Appl. Math., 57 (1997), pp. 1343-1372. · Zbl 0888.35018
[36] H. D. Victory, Jr., and B. P. O’Dwyer, On classical solutions of Vlasov-Poisson-Fokker-Planck systems, Indiana Univ. Math. J., 39 (1990), pp. 105-156. · Zbl 0674.60097
[37] S. Wollman and E. Ozizmir, Numerical approximation of the Vlasov-Poisson-Fokker-Planck system in one dimension, J. Comput. Phys., 202 (2005), pp. 602-644. · Zbl 1067.82057
[38] Y. Zheng and A. Majda, Existence of global weak solutions to one-component Vlasov-Poisson and Fokker-Planck-Poisson systems in one space dimension with measures as initial data, Comm. Pure Appl. Math., 47 (1994), pp. 1365-1401. · Zbl 0809.35088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.