×

On synchronized Fleming-Viot particle systems. (English) Zbl 1467.82047

Summary: This article presents a variant of Fleming-Viot particle systems, which are a standard way to approximate the law of a Markov process with killing as well as related quantities. Classical Fleming-Viot particle systems proceed by simulating \(N\) trajectories, or particles, according to the dynamics of the underlying process, until one of them is killed. At this killing time, the particle is instantaneously branched on one of the \((N-1)\) other ones, and so on until a fixed and finite final time \(T\). In our variant, we propose to wait until \(K\) particles are killed and then rebranch them independently on the \((N-K)\) alive ones. Specifically, we focus our attention on the large population limit and the regime where \(K/N\) has a given limit when \(N\) goes to infinity. In this context, we establish consistency and asymptotic normality results. The variant we propose is motivated by applications in rare event estimation problems through its connection with Adaptive Multilevel Splitting and Subset Simulation.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
82M60 Stochastic analysis in statistical mechanics
65C05 Monte Carlo methods
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60K37 Processes in random environments
82M31 Monte Carlo methods applied to problems in statistical mechanics

References:

[1] Au2001263 S.K. Au and J.L. Beck, Estimation of small failure probabilities in high dimensions by subset simulation, Probabilistic Engineering Mechanics 16 (2001), no. 4, 263-277.
[2] au:901 \bysame , Subset simulation and its application to seismic risk based on dynamic analysis, Journal of Engineering Mechanics 129 (2003), no. 8, 901-917.
[3] BBF12 M. Bieniek, K. Burdzy, and S. Finch, Non-extinction of a Fleming-Viot particle model, Probab. Theory Related Fields 153 (2012), no. 1-2, 293-332. · Zbl 1253.60089
[4] MR3924366 C.-E. Br\'ehier and T. Leli\`evre, On a new class of score functions to estimate tail probabilities of some stochastic processes with adaptive multilevel splitting, Chaos 29 (2019), no. 3, 033126, 13. · Zbl 1462.62148
[5] bhim96 K. Burdzy, R. Holyst, D. Ingerman, and P. March, Configurational transition in a Fleming-Viot-type model and probabilistic interpretation of Laplacian eigenfunctions, Journal of Physics A: Mathematical and General 29 (1996), no. 11, 2633. · Zbl 0901.60054
[6] cdfg F. C\'erou, P. Del Moral, T. Furon, and A. Guyader, Sequential Monte Carlo for Rare Event Estimation, Stat. Comput. 22 (2012), no. 3, 795-808. · Zbl 1252.62083
[7] cdgr1 F. C\'erou, B. Delyon, A. Guyader, and M. Rousset, A Central Limit Theorem for Fleming-Viot Particle Systems with Soft Killing, arXiv preprint arXiv:1611.00515 (2016). · Zbl 1447.82021
[8] cdgr3 F. C\'erou, B. Delyon, A. Guyader, and M. Rousset, On the Asymptotic Normality of Adaptive Multilevel Splitting, SIAM/ASA J. Uncertain. Quantif. 7 (2019), no. 1, 1-30. · Zbl 1412.82029
[9] cdgr2 \bysame , A central limit theorem for Fleming-Viot particle systems, Ann. Inst. Henri Poincar\'e Probab. Stat. 56 (2020), no. 1, 637-666. · Zbl 1447.82021
[10] cfgjournal F. C\'erou, T. Furon, and A. Guyader, Experimental assessment of the reliability for watermarking and fingerprinting schemes, EURASIP J. Inf. Secur. 2008 (2008), 6:1-6:12.
[11] cg2 F. C\'erou and A. Guyader, Adaptive Multilevel Splitting for Rare Event Analysis, Stoch. Anal. Appl. 25 (2007), no. 2, 417-443. · Zbl 1220.65009
[12] cg4 F. C\'erou and A. Guyader, Fluctuation Analysis of Adaptive Multilevel Splitting, Ann. Appl. Probab. 26 (2016), no. 6, 3319-3380. · Zbl 1362.65018
[13] cglp F. C\'erou, A. Guyader, T. Leli\`evre, and D. Pommier, A Multiple Replica Approach to Simulate Reactive Trajectories, The Journal of Chemical Physics 134 (2011), no. 5, 054108.
[14] MR3937660 F. C\'erou, A. Guyader, and M. Rousset, Adaptive Multilevel Splitting: Historical Perspective and Recent Results, Chaos 29 (2019), no. 4, 043108, 12. · Zbl 1417.65024
[15] delmoral04a P. Del Moral, Feynman-Kac formulae, genealogical and interacting particle systems with applications, Springer-Verlag, New York, 2004. · Zbl 1130.60003
[16] del2013mean \bysame , Mean field simulation for Monte Carlo integration, CRC Press, 2013. · Zbl 1282.65011
[17] ek86 S.N. Ethier and T.G. Kurtz, Markov processes, John Wiley & Sons, Inc., New York, 1986. · Zbl 0592.60049
[18] GK04 I. Grigorescu and M. Kang, Hydrodynamic limit for a Fleming-Viot type system, Stochastic Process. Appl. 110 (2004), no. 1, 111-143. · Zbl 1075.60124
[19] GK12 \bysame , Immortal particle for a catalytic branching process, Probab. Theory Related Fields 153 (2012), no. 1-2, 333-361. · Zbl 1251.60064
[20] ghm A. Guyader, N. Hengartner, and E. Matzner-Lber, Simulation and estimation of extreme quantiles and extreme probabilities, Applied Mathematics and Optimization 64 (2011), 171-196. · Zbl 1227.62034
[21] js03 J. Jacod and A.N. Shiryaev, Limit theorems for stochastic processes, second ed., vol. 288, Springer-Verlag, Berlin, 2003. · Zbl 1018.60002
[22] Lestang T. Lestang, F. Ragone, C.-E. Br\'ehier, C. Herbert, and F. Bouchet, Computing return times or return periods with rare event algorithms, Journal of Statistical Mechanics: Theory and Experiment 2018 (2018), no. 4, 043213. · Zbl 1459.82367
[23] lobus J.-U. L\"obus, A stationary Fleming-Viot type Brownian particle system, Math. Z. 263 (2009), no. 3, 541-581. · Zbl 1176.60084
[24] tutorialAMS L.J.S. Lopes, C.G. Mayne, C. Chipot, and T. Leli\`evre, Adaptive Multilevel Splitting Method: Isomerization of the alanine dipeptide, arXiv preprint arXiv:1707.00950 (2017).
[25] protter P.E. Protter, Stochastic integration and differential equations, Springer-Verlag, Berlin, 2005. · Zbl 0694.60047
[26] teo2016adaptive I. Teo, C.G. Mayne, K. Schulten, and T. Leli\`evre, Adaptive multilevel splitting method for molecular dynamics calculation of benzamidine-trypsin dissociation time, Journal of chemical theory and computation 12 (2016), no. 6, 2983-2989.
[27] v14 D. Villemonais, General approximation method for the distribution of Markov processes conditioned not to be killed, ESAIM Probab. Stat. 18 (2014), 441-467. · Zbl 1310.82032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.