×

Robin-Robin domain decomposition methods for the dual-porosity-conduit system. (English) Zbl 1467.76035

Summary: The recently developed dual-porosity-Stokes model describes a complicated dual-porosity-conduit system which uses a dual-porosity/permeability model to govern the flow in porous media coupled with free flow via four physical interface conditions. This system has important applications in unconventional reservoirs especially the multistage fractured horizontal wellbore problems. In this paper, we propose and analyze domain decomposition methods to decouple the large system arisen from the discretization of dual-porosity-Stokes model. Robin boundary conditions are used to decouple the coupling conditions on the interface. Then, Robin-Robin domain decomposition methods are constructed based on the two decoupled sub-problems. Convergence analysis is demonstrated and a geometric convergence order is obtained. Optimized Schwarz methods are proposed for the dual-porosity-Stokes model and optimized Robin parameters are obtained to improve the convergence of proposed algorithms. Three computational experiments are presented to illustrate and validate the accuracy and applicability of proposed algorithms.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
76D07 Stokes and related (Oseen, etc.) flows
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Ervin, VJ; Jenkins, EW; Sun, S., Coupled generalized nonlinear Stokes flow with flow through a porous medium, SIAM J. Numer Anal., 47, 2, 929-952 (2009) · Zbl 1279.76032 · doi:10.1137/070708354
[2] Fraunhofer, W.; Winter, G., The use of asymmetrical flow field-flow fractionation in pharmaceutics and biopharmaceutics, Eur. J. Pharm. Biopharm., 58, 2, 369-383 (2004) · doi:10.1016/j.ejpb.2004.03.034
[3] Cao, S.; Pollastrini, J.; Jiang, Y., Separation and characterization of protein aggregates and particles by field flow fractionation, Curr. Pharm. Biotechnol., 10, 4, 382-390 (2009) · doi:10.2174/138920109788488978
[4] D’Angelo, C.; Zunino, P., Robust numerical approximation of coupled Stokes’ and Darcy’s flows applied to vascular hemodynamics and biochemical transport, ESAIM Math. Model. Numer. Anal., 45, 3, 447-476 (2011) · Zbl 1274.92010 · doi:10.1051/m2an/2010062
[5] Chen, J.; Sun, S.; Wang, X., A numerical method for a model of two-phase flow in a coupled free flow and porous media system, J. Comput. Phys., 268, 1-16 (2014) · Zbl 1349.76187 · doi:10.1016/j.jcp.2014.02.043
[6] Arbogast, T.; Gomez, M., A discretization and multigrid solver for a Darcy-Stokes system of three dimensional vuggy porous media, Comput. Geosci., 13, 3, 331-348 (2009) · Zbl 1338.76047 · doi:10.1007/s10596-008-9121-y
[7] Nassehi, V., Modelling of combined Navier-Stokes and Darcy flows in crossflow membrane filtration, Chem. Eng. Sci., 53, 1253-1265 (1998) · doi:10.1016/S0009-2509(97)00443-0
[8] Hanspal, N.; Waghode, A.; Nassehi, V.; Wakeman, R., Numerical analysis of coupled Stokes/Darcy flow in industrial filtrations, Transp. Porous Media, 64, 73-101 (2006) · Zbl 1309.76195 · doi:10.1007/s11242-005-1457-3
[9] Hoppe, R.; Porta, P.; Vassilevski, Y., Computational issues related to iterative coupling of subsurface and channel flows, Calcolo, 44, 1, 1-20 (2007) · Zbl 1150.76028 · doi:10.1007/s10092-007-0126-z
[10] Discacciati, M.; Miglio, E.; Quarteroni, A., Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43, 1-2, 57-74 (2002) · Zbl 1023.76048 · doi:10.1016/S0168-9274(02)00125-3
[11] Çeşmelioğlu, A.; Rivière, B., Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow, J. Sci. Comput., 40, 1-3, 115-140 (2009) · Zbl 1203.76078 · doi:10.1007/s10915-009-9274-4
[12] Babuška, I.; Gatica, GN, A residual-based a posteriori error estimator for the Stokes-Darcy coupled problem, SIAM J. Numer. Anal., 48, 2, 498-523 (2010) · Zbl 1410.76148 · doi:10.1137/080727646
[13] Gatica, GN; Oyarzúa, R.; Sayas, FJ, A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes-Darcy coupled problem, Comput. Methods Appl. Mech. Eng., 200, 21-22, 1877-1891 (2011) · Zbl 1228.76085 · doi:10.1016/j.cma.2011.02.009
[14] Boubendir, Y.; Tlupova, S., Domain decomposition methods for solving Stokes-Darcy problems with boundary integrals, SIAM J. Sci. Comput., 35, 1, B82-B106 (2013) · Zbl 1372.76077 · doi:10.1137/110838376
[15] Wang, W.; Xu, C., Spectral methods based on new formulations for coupled Stokes and Darcy equations, J. Comput. Phys., 257, part A, 126-142 (2014) · Zbl 1349.76574 · doi:10.1016/j.jcp.2013.09.036
[16] Vassilev, D.; Yotov, I., Coupling Stokes-Darcy with flow transport, SIAM J. Sci. Comput., 31, 5, 3661-3684 (2009) · Zbl 1391.76757 · doi:10.1137/080732146
[17] Tlupova, S.; Cortez, R., Boundary integral solutions of coupled Stokes and Darcy flows, J. Comput. Phys., 228, 1, 158-179 (2009) · Zbl 1188.76232 · doi:10.1016/j.jcp.2008.09.011
[18] Rybak, I.; Magiera, J., A multiple-time-step technique for coupled free flow and porous medium systems, J. Comput. Phys., 272, 272, 327-342 (2014) · Zbl 1349.76827 · doi:10.1016/j.jcp.2014.04.036
[19] Rivière, B.; Yotov, I., Locally conservative coupling of Stokes and Darcy flows, SIAM J. Numer. Anal., 42, 5, 1959-1977 (2005) · Zbl 1084.35063 · doi:10.1137/S0036142903427640
[20] Münzenmaier, S.; Starke, G., First-order system least squares for coupled Stokes-Darcy flow, SIAM J. Numer. Anal., 49, 1, 387-404 (2011) · Zbl 1339.76026 · doi:10.1137/100805108
[21] Mu, M.; Zhu, X., Decoupled schemes for a non-stationary mixed Stokes-Darcy model, Math. Comput., 79, 270, 707-731 (2010) · Zbl 1369.76026 · doi:10.1090/S0025-5718-09-02302-3
[22] Mu, M.; Xu, J., A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 45, 5, 1801-1813 (2007) · Zbl 1146.76031 · doi:10.1137/050637820
[23] Márquez, A.; Meddahi, S.; Sayas, FJ, A decoupled preconditioning technique for a mixed Stokes-Darcy model, J. Sci. Comput., 57, 1, 174-192 (2013) · Zbl 1282.76098 · doi:10.1007/s10915-013-9700-5
[24] Layton, WJ; Schieweck, F.; Yotov, I., Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40, 6, 2195-2218 (2002) · Zbl 1037.76014 · doi:10.1137/S0036142901392766
[25] Girault, V.; Vassilev, D.; Yotov, I., Mortar multiscale finite element methods for Stokes-Darcy flows, Numer. Math., 127, 1, 93-165 (2014) · Zbl 1396.76051 · doi:10.1007/s00211-013-0583-z
[26] Girault, V.; Rivière, B., DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition, SIAM J. Numer. Anal., 47, 3, 2052-2089 (2009) · Zbl 1406.76082 · doi:10.1137/070686081
[27] Galvis, J.; Sarkis, M., FETI and BDD preconditioners for Stokes-Mortar-Darcy systems, Commun. Appl. Math. Comput. Sci., 5, 1-30 (2010) · Zbl 1189.35226 · doi:10.2140/camcos.2010.5.1
[28] Ervin, VJ; Jenkins, EW; Lee, H., Approximation of the Stokes-Darcy system by optimization, J. Sci. Comput., 59, 3, 775-794 (2014) · Zbl 1297.76054 · doi:10.1007/s10915-013-9779-8
[29] Discacciati, M.; Quarteroni, A.; Valli, A., Robin-Robin domain decomposition methods for the Stokes-Darcy coupling, SIAM J. Numer Anal., 45, 3, 1246-1268 (2007) · Zbl 1139.76030 · doi:10.1137/06065091X
[30] Chen, W.; Gunzburger, M.; Hua, F.; Wang, X., A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system, SIAM J. Numer. Anal., 49, 3, 1064-1084 (2011) · Zbl 1414.76017 · doi:10.1137/080740556
[31] Cao, Y.; Gunzburger, M.; Hu, X.; Hua, F.; Wang, X.; Zhao, W., Finite element approximation for Stokes-Darcy flow with Beavers-Joseph interface conditions, SIAM J. Numer. Anal., 47, 6, 4239-4256 (2010) · Zbl 1252.76040 · doi:10.1137/080731542
[32] Badea, L.; Discacciati, M.; Quarteroni, A., Numerical analysis of the Navier-Stokes/Darcy coupling, Numer. Math., 115, 2, 195-227 (2010) · Zbl 1423.35304 · doi:10.1007/s00211-009-0279-6
[33] Hou, J.; Qiu, M.; He, X.; Guo, C.; Wei, M.; Bai, B., A dual-porosity-stokes model and finite element method for coupling dual-porosity flow and free flow, SIAM J. Sci. Comput., 38, 5, B710-B739 (2016) · Zbl 1457.65112 · doi:10.1137/15M1044072
[34] Chen, W.; Gunzburger, M.; Sun, D.; Wang, X., An efficient and long-time accurate third-order algorithm for the Stokes-Darcy system, Numer. Math., 134, 4, 857-879 (2016) · Zbl 1388.76127 · doi:10.1007/s00211-015-0789-3
[35] Layton, W.; Tran, H.; Trenchea, C., Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater-surface water flows, SIAM J. Numer. Anal., 51, 1, 248-272 (2013) · Zbl 1370.76173 · doi:10.1137/110834494
[36] Rivière, B., Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems, J. Sci. Comput., 22, /23, 479-500 (2005) · Zbl 1065.76143 · doi:10.1007/s10915-004-4147-3
[37] Kanschat, G.; Riviére, B., A strongly conservative finite element method for the coupling of Stokes and Darcy flow, J. Comput. Phys., 229, 5933-5943 (2010) · Zbl 1425.76068 · doi:10.1016/j.jcp.2010.04.021
[38] Chidyagwai, P.; Rivière, B., On the solution of the coupled Navier-Stokes and Darcy equations, Comput. Methods Appl. Mech. Eng., 198, 47-48, 3806-3820 (2009) · Zbl 1230.76023 · doi:10.1016/j.cma.2009.08.012
[39] Urquiza, JM; N’Dri, D.; Garon, A.; Delfour, MC, Coupling Stokes and Darcy equations, Appl. Numer. Math., 58, 5, 525-538 (2008) · Zbl 1134.76033 · doi:10.1016/j.apnum.2006.12.006
[40] Rui, H.; Zhang, R., A unified stabilized mixed finite element method for coupling Stokes and Darcy flows, Comput. Methods Appl. Mech. Eng., 198, 33-36, 2692-2699 (2009) · Zbl 1228.76090 · doi:10.1016/j.cma.2009.03.011
[41] Karper, T.; Mardal, KA; Winther, R., Unified finite element discretizations of coupled Darcy-Stokes flow, Numer. Methods Partial Differ. Equ., 25, 2, 311-326 (2009) · Zbl 1157.76026 · doi:10.1002/num.20349
[42] Feng, M.; Qi, R.; Zhu, R.; Ju, B., Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem, Appl. Math. Mech. (English Ed.), 31, 3, 393-404 (2010) · Zbl 1354.65245 · doi:10.1007/s10483-010-0312-z
[43] Chen, W.; Chen, P.; Gunzburger, M.; Yan, N., Superconvergence analysis of FEMs for the Stokes-Darcy system, Math Methods Appl. Sci., 33, 13, 1605-1617 (2010) · Zbl 1303.76086 · doi:10.1002/mma.1279
[44] Çeşmelioğlu, A.; Rivière, B., Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow, J. Numer. Math., 16, 4, 249-280 (2008) · Zbl 1159.76010 · doi:10.1515/JNUM.2008.012
[45] Arbogast, T.; Brunson, DS, A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium, Comput. Geosci., 11, 3, 207-218 (2007) · Zbl 1186.76660 · doi:10.1007/s10596-007-9043-0
[46] He, X-M; Li, J.; Lin, Y.; Ming, J., A domain decomposition method for the steady-state Navier-Stokes-Darcy model with Beavers-Joseph interface condition, SIAM J. Sci. Comput., 37, 5, S264-S290 (2015) · Zbl 1325.76119 · doi:10.1137/140965776
[47] Shan, L.; Zheng, H., Partitioned time stepping method for fully evolutionary Stokes-Darcy flow with Beavers-Joseph interface conditions, SIAM J. Numer. Anal., 51, 2, 813-839 (2013) · Zbl 1268.76035 · doi:10.1137/110828095
[48] Shan, L.; Zheng, H.; Layton, W., A decoupling method with different sub-domain time steps for the nonstationary Stokes-Darcy model, Numer. Methods Partial Differ. Equ., 29, 2, 549-583 (2013) · Zbl 1364.76096 · doi:10.1002/num.21720
[49] Galvis, J., Sarkis, M.: Balancing domain decomposition methods for mortar coupling Stokes-Darcy systems. In: Domain Decomposition Methods in Science and Engineering XVI. Lect. Notes Comput. Sci. Eng., vol. 55, pp. 373-380. Springer, Berlin (2007)
[50] Boubendir, Y.; Tlupova, S., Stokes-Darcy boundary integral solutions using preconditioners, J. Comput. Phys., 228, 23, 8627-8641 (2009) · Zbl 1287.76213 · doi:10.1016/j.jcp.2009.08.014
[51] Bernardi, C.; Rebollo, TC; Hecht, F.; Mghazli, Z., Mortar finite element discretization of a model coupling Darcy and Stokes equations, M2AN Math. Model. Numer. Anal., 42, 3, 375-410 (2008) · Zbl 1138.76044 · doi:10.1051/m2an:2008009
[52] Gatica, GN; Meddahi, S.; Oyarzúa, R., A conforming mixed finite-element method for the coupling of fluid flow with porous media flow, IMA J. Numer. Anal., 29, 1, 86-108 (2009) · Zbl 1157.76025 · doi:10.1093/imanum/drm049
[53] Jiang, B., A parallel domain decomposition method for coupling of surface and groundwater flows, Comput. Methods Appl. Mech. Eng., 198, 9-12, 947-957 (2009) · Zbl 1229.76048 · doi:10.1016/j.cma.2008.11.001
[54] Discacciati, M., Quarteroni, A.: Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations. In: Numerical Mathematics and Advanced Applications, pp. 3-20. Springer Italia, Milan (2003) · Zbl 1254.76051
[55] Discacciati, M.; Quarteroni, A., Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations, Comput. Vis. Sci., 6, 2-3, 93-103 (2004) · Zbl 1299.76252 · doi:10.1007/s00791-003-0113-0
[56] Discacciati, M.: Domain decomposition methods for the coupling of surface and groundwater flows. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland (2004)
[57] Cao, Y.; Gunzburger, M.; He, X-M; Wang, X., Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems, Math. Comput., 83, 288, 1617-1644 (2014) · Zbl 1457.65089 · doi:10.1090/S0025-5718-2014-02779-8
[58] Cao, Y.; Gunzburger, M.; He, X-M; Wang, X., Robin-Robin domain decomposition methods for the steady Stokes-Darcy model with Beaver-Joseph interface condition, Numer. Math., 117, 4, 601-629 (2011) · Zbl 1305.76072 · doi:10.1007/s00211-011-0361-8
[59] Cai, M.; Mu, M.; Xu, J., Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications, J. Comput. Appl. Math., 233, 2, 346-355 (2009) · Zbl 1172.76023 · doi:10.1016/j.cam.2009.07.029
[60] Shan, L.; Hou, J.; Yan, W.; Chen, J., Partitioned time stepping method for a dual-porosity-Stokes model, J. Sci. Comput., 79, 1, 389-413 (2019) · Zbl 1419.65030 · doi:10.1007/s10915-018-0879-3
[61] Arbogast, T., The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow, Nonlinear Anal., 19, 11, 1009-1031 (1992) · Zbl 0783.76090 · doi:10.1016/0362-546X(92)90121-T
[62] Douglas, J.; Kischinhevsky, M.; Paes Leme, PJ; Spagnuolo, AM, A multiple-porosity model for a single-phase flow through naturally-fractured porous media, Comput. Appl. Math., 17, 1, 19-48 (1998) · Zbl 0920.76083
[63] Barenblatt, GE; Zheltov, IP; Kochina, IN, Basic concepts in the theory of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24, 1286-1303 (1960) · Zbl 0104.21702 · doi:10.1016/0021-8928(60)90107-6
[64] Warren, JE; Root, PJ, The behavior of naturally fractured reservoirs, Soc. Petrol. Eng. J., 3, 3, 245-255 (1963) · doi:10.2118/426-PA
[65] Austria, J.J.C., O’Sullivan, M.J.: Dual porosity models of a two-phase geothermal reservoir. In: Proceedings World Geothermal Congress. Melbourne (2015)
[66] Aguilera, R: Naturally fractured reservoirs. In: Proceedings World Geothermal Congress. Pennwell Publishing Company, Tulsa (1995)
[67] Discacciati, M.; Gerardo-Giorda, L., Optimized Schwarz methods for the Stokes-Darcy coupling, IMA J. Numer. Anal., 38, 4, 1959-1983 (2018) · Zbl 1477.65258 · doi:10.1093/imanum/drx054
[68] Gander, M.J., Vanzan, T.: On the derivation of optimized transmission conditions for the stokes-darcy coupling. In: Domain Decomposition Methods in Science and Engineering XXV. LNCSE. Springer (2019) · Zbl 1428.65105
[69] Saffman, P., On the boundary condition at the interface of a porous medium, Stud. Appl. Math., 1, 77-84 (1971)
[70] Toselli, A.; Widlund, OB, Domain Decomposition Methods—Algorithms and Theory (2004), New York: Springer, New York · Zbl 1069.65138
[71] Lions, P.-L.: On the Schwarz alternating method. III. A variant for nonoverlapping subdomains. In: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989), pp. 202-223. SIAM, Philadelphia (1990) · Zbl 0704.65090
[72] Gander, MJ, Optimized Schwarz methods, SIAM J. Numer. Anal., 44, 4, 699-731 (2006) · Zbl 1117.65165 · doi:10.1137/S0036142903425409
[73] Brenner, SC; Scott, LR, The Mathematical Theory of Finite Element Methods (1994), New York: Springer, New York · Zbl 0804.65101 · doi:10.1007/978-1-4757-4338-8
[74] Smolen, J.J.: Cased Hole and Production Log Evaluation. PennWell Books (1996)
[75] Seale, R. A., Donaldson, J., Athans, J.: Multistage fracturing system: improving operational efficiency and production. In: SPE Eastern Regional Meeting. Society of Petroleum Engineers (2006)
[76] Bello, R.O., Wattenbarger, R.A.: Multi-stage hydraulically fractured shale gas rate transient analysis. In: Paper SPE 126754 Presented at the SPE North Africa Technical Conference and Exhibition held in Cairo, pp. 14-17, Egypt (2010)
[77] Gigante, G.; Pozzoli, M.; Vergara, C., Optimized Schwarz Methods for the diffusion-reaction problem with cylindrical interfaces, SIAM J. Numer. Anal., 51, 6, 3402-3420 (2013) · Zbl 1287.65134 · doi:10.1137/120887758
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.