×

Spectral measures of spiked random matrices. (English) Zbl 1467.60012

In the paper under review the author studies two models of deformations of random matrices.
1.
In the first one, the following Wigner matrix: \[ X_n=\begin{bmatrix} X_{11}^{(n)} & X_{12}^{(n)} & \cdots & X_{1n}^{(n)} \\ X_{12}^{(n)} & X_{22}^{(n)} & \cdots & X_{2n}^{(n)} \\ \vdots & \vdots & \ddots & \vdots \\ X_{1n}^{(n)} & X_{2n}^{(n)} & \cdots & X_{nn}^{(n)} \\ \end{bmatrix} \] and the perturbation model: \[ W_n:=\frac 1{\sqrt n}X_n+A_n, \] where \(A_n\) is a deterministic matrix or random matrix independent of \(X_n\), with eigenvalues \(\gamma_1^{(n)}\), \(\ldots\), \(\gamma_n^{(n)}\), is considered.
2.
In the second one, the following Wishart matrix: \[ X_n=\begin{bmatrix} X_{11}^{(n)} & X_{12}^{(n)} & \cdots & X_{1m}^{(n)} \\ X_{12}^{(n)} & X_{22}^{(n)} & \cdots & X_{2m}^{(n)} \\ \vdots & \vdots & \ddots & \vdots \\ X_{1n}^{(n)} & X_{2n}^{(n)} & \cdots & X_{nm}^{(n)} \\ \end{bmatrix} \] and the perturbation model: \[ S_n:=\frac 1n\Sigma_n^{\frac 12}X_nX_n^T\Sigma_n^{\frac 12}, \] where \(\Sigma_n\) is a covariance matrix, is taken into consideration.

For the both cases the author studies the limiting spectral measure in the direction of an eigenvector of the perturbation. From the obtained results he derives two applications: one connected to the value of the outlier and the norm its associated eigenvector projection in the direction of the spike, and one connected to the properties of the projection of non-outlier eigenvectors in the direction of the spike.

MSC:

60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)

References:

[1] Allez, R.; Bouchaud, J-P, Eigenvector dynamics under free addition, Random Matrices Theory Appl., 3, 3, 1450010 (2014) · Zbl 1301.60008 · doi:10.1142/S2010326314500105
[2] Bai, ZD; Miao, BQ; Pan, GM, On asymptotics of eigenvectors of large sample covariance matrix, Ann. Probab., 35, 4, 1532-1572 (2007) · Zbl 1162.15012 · doi:10.1214/009117906000001079
[3] Bai, ZD; Silverstein, JW, No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices, Ann. Probab., 26, 1, 316-345 (1998) · Zbl 0937.60017 · doi:10.1214/aop/1022855421
[4] Baik, J.; Arous, GB; Péché, S., Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, Ann. Probab., 33, 5, 1643-1697 (2005) · Zbl 1086.15022 · doi:10.1214/009117905000000233
[5] Belinschi, ST; Bercovici, H.; Capitaine, M.; Février, M., Outliers in the spectrum of large deformed unitarily invariant models, Ann. Probab., 45, 6, 3571-3625 (2017) · Zbl 1412.60014 · doi:10.1214/16-AOP1144
[6] Benaych-Georges, Florent, Enriquez, Nathanaël, Michaïl, Alkéos: Eigenvectors of a matrix under random perturbation. arXiv preprint arXiv:1801.10512, (2018) · Zbl 1433.15037
[7] Benaych-Georges, F., Knowles, A.: Local semicircle law for Wigner matrices. In: Advanced topics in random matrices, volume 53 of Panor. Synthèses, pp. 1-90. Soc. Math. France, Paris (2017) · Zbl 1403.60012
[8] Benaych-Georges, F.; Nadakuditi, RR, The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices, Adv. Math., 227, 1, 494-521 (2011) · Zbl 1226.15023 · doi:10.1016/j.aim.2011.02.007
[9] Biane, P., On the free convolution with a semi-circular distribution, Indiana Univ. Math. J., 46, 3, 705-718 (1997) · Zbl 0904.46045 · doi:10.1512/iumj.1997.46.1467
[10] Bloemendal, A.; Knowles, A.; Yau, H-T; Yin, J., On the principal components of sample covariance matrices, Probab. Theory Related Fields, 164, 1-2, 459-552 (2016) · Zbl 1339.15023 · doi:10.1007/s00440-015-0616-x
[11] Capitaine, M., Additive/multiplicative free subordination property and limiting eigenvectors of spiked additive deformations of Wigner matrices and spiked sample covariance matrices, J. Theoret. Probab., 26, 3, 595-648 (2013) · Zbl 1279.15026 · doi:10.1007/s10959-012-0416-5
[12] Capitaine, M., Donati-Martin, C.: Spectrum of deformed random matrices and free probability. In: Advanced Topics in Random Matrices, volume 53 of Panor. Synthèses, pp. 151-190. Soc. Math. France, Paris (2017) · Zbl 1417.60007
[13] Füredi, Z.; Komlós, J., The eigenvalues of random symmetric matrices, Combinatorica, 1, 3, 233-241 (1981) · Zbl 0494.15010 · doi:10.1007/BF02579329
[14] Gamboa, F., Nagel, J., Rouault, A.: Sum rules and large deviations for spectral matrix measures in the Jacobi ensemble. arXiv preprint arXiv:1811.06311 (2018) · Zbl 1442.60037
[15] Knowles, A.; Yin, J., The outliers of a deformed Wigner matrix, Ann. Probab., 42, 5, 1980-2031 (2014) · Zbl 1306.15034 · doi:10.1214/13-AOP855
[16] Knowles, A.; Yin, J., Anisotropic local laws for random matrices, Probab. Theory Related Fields, 169, 1-2, 257-352 (2017) · Zbl 1382.15051 · doi:10.1007/s00440-016-0730-4
[17] Ledoit, O.; Péché, S., Eigenvectors of some large sample covariance matrix ensembles, Probab. Theory Related Fields, 151, 1-2, 233-264 (2011) · Zbl 1229.60009 · doi:10.1007/s00440-010-0298-3
[18] Lee, JO; Schnelli, K.; Stetler, B.; Yau, H-T, Bulk universality for deformed Wigner matrices, Ann. Probab., 44, 3, 2349-2425 (2016) · Zbl 1346.15037 · doi:10.1214/15-AOP1023
[19] Lenczewski, R., Random matrix model for free Meixner laws, IMRN, 11, 3499-3524 (2015) · Zbl 1330.60018
[20] Pastur, LA, The spectrum of random matrices, Teoret. Mat. Fiz., 10, 1, 102-112 (1972)
[21] Silverstein, JW, Strong convergence of the empirical distribution of eigenvalues of large-dimensional random matrices, J. Multivariate Anal., 55, 2, 331-339 (1995) · Zbl 0851.62015 · doi:10.1006/jmva.1995.1083
[22] Silverstein, JW; Choi, S-I, Analysis of the limiting spectral distribution of large-dimensional random matrices, J. Multivariate Anal., 54, 2, 295-309 (1995) · Zbl 0872.60013 · doi:10.1006/jmva.1995.1058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.