×

Sharp endpoint estimates for eigenfunctions restricted to submanifolds of codimension 2. (English) Zbl 1467.58006

Summary: N. Burq et al. [Duke Math. J. 138, No. 3, 445–486 (2007; Zbl 1131.35053)] and R. Hu [Forum Math. 21, No. 6, 1021–1052 (2009; Zbl 1187.35147)] established \(L^p\) estimates (\(2 \leq p \leq \infty \)) for the restriction of eigenfunctions to submanifolds. The estimates are sharp, except for the log loss at the endpoint \(L^2\) estimates for submanifolds of codimension 2. It has long been believed that the log loss at the endpoint can be removed in general, while the problem is still open. So this paper is devoted to the study of sharp endpoint restriction estimates for eigenfunctions in this case. X. Chen and C. D. Sogge [Commun. Math. Phys. 329, No. 2, 435–459 (2014; Zbl 1293.58011)] removed the log loss for the geodesics on 3-dimensional manifolds. In this paper, we generalize their result to higher dimensions and prove that the log loss can be removed for totally geodesic submanifolds of codimension 2. Moreover, on 3-dimensional manifolds, we can remove the log loss for curves with nonvanishing geodesic curvatures, and more general finite type curves. The problem in 3D is essentially related to Hilbert transforms along curves in the plane and a class of singular oscillatory integrals studied by Phong-Stein, Ricci-Stein, Pan, Seeger, Carbery-Pérez.

MSC:

58C40 Spectral theory; eigenvalue problems on manifolds
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)

References:

[1] N. Anantharaman, The eigenfunctions of the Laplacian do not concentrate on sets of topological entropy, Preprint, 2004.
[2] Blair, M. D.; Sogge, C. D., Kakeya-Nikodym averages, \( L^p\)-norms and lower bounds for nodal sets of eigenfunctions in higher dimensions, J. Eur. Math. Soc., 17, 2513-2543 (2015) · Zbl 1330.58023
[3] Blair, M. D.; Sogge, C. D., Refined and microlocal Kakeya-Nikodym bounds for eigenfunctions in two dimensions, Anal. PDE, 8, 747-764 (2015) · Zbl 1321.58029
[4] Blair, M. D.; Sogge, C. D., Refined and microlocal Kakeya-Nikodym bounds of eigenfunctions in higher dimensions, Commun. Math. Phys., 356, 2, 501-533 (2017) · Zbl 1377.58026
[5] Blair, M. D.; Sogge, C. D., Concerning Toponogov’s theorem and logarithmic improvement of estimates of eigenfunctions, J. Differ. Geom., 109, 2, 189-221 (2018) · Zbl 1394.58016
[6] Blair, M. D., On logarithmic improvements of critical geodesic restriction bounds in the presence of nonpositive curvature, Isr. J. Math., 224, 1, 407-436 (2018) · Zbl 1396.53060
[7] Blair, M. D.; Sogge, C. D., Logarithmic improvements in lp bounds for eigenfunctions at the critical exponent in the presence of nonpositive curvature, Invent. Math., 217, 2, 703-748 (2019) · Zbl 1428.35248
[8] Bourgain, J., Geodesic restrictions and \(L^p\)-estimates for eigenfunctions of Riemannian surfaces, Am. Math. Soc. Tranl., 226, 27-35 (2009) · Zbl 1189.58015
[9] Bourgain, J.; Rudnick, Z., Restriction of toral eigenfunctions to hypersurfaces and nodal sets, Geom. Funct. Anal., 22, 4, 878-937 (2012) · Zbl 1276.53047
[10] Burq, N.; Gérard, P.; Tzvetkov, N., Restriction of the Laplace-Beltrami eigenfunctions to submanifolds, Duke Math. J., 138, 445-486 (2007) · Zbl 1131.35053
[11] Burq, N.; Gérard, P.; Tzvetkov, N., Multilinear estimates for the Laplace spectral projectors on compact manifolds, C. R. Math., 338, 5, 359-364 (2004) · Zbl 1040.58011
[12] Burq, N.; Gérard, P.; Tzvetkov, N., Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math., 159, 1, 187-223 (2005) · Zbl 1092.35099
[13] Burq, N.; Gérard, P.; Tzvetkov, N., Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations, Ann. Sci. Éc. Norm. Supér., 38, 2, 255-301 (2005) · Zbl 1116.35109
[14] Canzani, Y.; Galkowski, J.; Toth, J. A., Averages of eigenfunctions over hypersurfaces, Commun. Math. Phys., 360, 2, 619-637 (2018) · Zbl 1393.53031
[15] Carbery, A.; Pérez, S., Maximal functions and Hilbert transforms along variable flat curves, Math. Res. Lett., 6, 237-250 (1999) · Zbl 0959.42007
[16] Chen, X., An improvement on eigenfunction restriction estimates for compact boundaryless Riemannian manifolds with nonpositive sectional curvature, Trans. Am. Math. Soc., 367, 4019-4039 (2015) · Zbl 1318.58015
[17] Chen, X.; Sogge, C. D., A few endpoint geodesic restriction estimates for eigenfunctions, Commun. Math. Phys., 329, 2, 435-459 (2014) · Zbl 1293.58011
[18] Colin De Verdiere, Y., Ergodicité et fonctions propres du laplacien, Commun. Math. Phys., 102, 3, 497-502 (1985) · Zbl 0592.58050
[19] Gérard, P.; Leichtnam, É., Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., 71, 2, 559-607 (1993) · Zbl 0788.35103
[20] Greenleaf, A.; Seeger, A., Fourier integral operators with fold singularities, J. Reine Angew. Math., 455, 35-56 (1994) · Zbl 0799.42008
[21] Han, X., Small scale quantum ergodicity in negatively curved manifolds, Nonlinearity, 28, 9, 3263 (2015) · Zbl 1386.58016
[22] Hassell, A.; Tacy, M., Improvement of eigenfunction estimates on manifolds of nonpositive curvature, Forum Math., 27, 3, 1435-1451 (2015) · Zbl 1410.35264
[23] Helffer, B.; Martinez, A.; Didier, R., Ergodicité et limite semi-classique, Commun. Math. Phys., 109, 2, 313-326 (1987) · Zbl 0624.58039
[24] Hezari, H.; Rivière, G., \( L^p\) norms, nodal sets, and quantum ergodicity, Adv. Math., 290, 938-966 (2016) · Zbl 1332.81067
[25] Hezari, H., Quantum ergodicity and l p norms of restrictions of eigenfunctions, Commun. Math. Phys., 357, 3, 1157-1177 (2018) · Zbl 1387.58033
[26] Hu, R., \( L^p\) norm estimates of eigenfunctions restricted to submanifolds, Forum Math., 6, 1021-1052 (2009) · Zbl 1187.35147
[27] Huang, X.; Zhang, C., Restriction of toral eigenfunctions to totally geodesic submanifolds, Anal. PDE, 14, 861-880 (2021) · Zbl 1467.58014
[28] Hörmander, L., Oscillatory integrals and multipliers on FLp, Ark. Mat., 11, 1-2, 1-11 (1973) · Zbl 0254.42010
[29] Lindenstrauss, E., Invariant measures and arithmetic quantum unique ergodicity, Ann. Math., 165-219 (2006) · Zbl 1104.22015
[30] Nagel, A.; Vance, J.; Wainger, S.; Weinberg, D., Hilbert transforms for convex curves, Duke Math. J., 50, 3, 735-744 (1983) · Zbl 0524.44001
[31] Nagel, A.; Wainger, S., Hilbert transforms associated with plane curves, Trans. Am. Math. Soc., 223, 235-252 (1976) · Zbl 0341.44005
[32] Pan, Y., Uniform estimates for oscillatory integral operators, J. Funct. Anal., 100, 1, 207-220 (1991) · Zbl 0735.45010
[33] Pan, Y., L 2 estimates for convolution operators with oscillating kernels, Math. Proc. Camb. Philos. Soc., 113 (1993) · Zbl 0779.42009
[34] Parissis, Ioannis R., A sharp bound for the Stein-Wainger oscillatory integral, Proc. Am. Math. Soc., 963-972 (2008) · Zbl 1215.42010
[35] Phong, D. H.; Stein, E. M., Hilbert integrals, singular integrals, and Radon transforms I, Acta Math., 157, 1, 99-157 (1986) · Zbl 0622.42011
[36] Reznikov, A., Norms of geodesic restrictions for eigenfunctions on hyperbolic surfaces and representation theory
[37] Reznikov, A., A Uniform Bound for Geodesic Periods of Eigenfunctions on Hyperbolic Surfaces, Forum Mathematicum, vol. 27, 1569-1590 (2015), De Gruyter · Zbl 1408.35109
[38] Ricci, F.; Stein, E. M., Harmonic analysis on nilpotent groups and singular integrals I. Oscillatory integrals, J. Funct. Anal., 73, 1, 179-194 (1987) · Zbl 0622.42010
[39] Sarnak, P., Arithmetic quantum chaos, (The Schur Lectures. The Schur Lectures, 1992, Tel Aviv. The Schur Lectures. The Schur Lectures, 1992, Tel Aviv, Israel Math. Conf. Proc., vol. 8 (1995)), 183-236 · Zbl 0831.58045
[40] Seeger, A., \( L^2\) estimates for a class of singular oscillatory integrals, Math. Res. Lett., 1, 65-73 (1994) · Zbl 0831.45012
[41] Shnirel’man, A. I., Ergodic properties of eigenfunctions, Usp. Mat. Nauk, 29, 6, 181-182 (1974) · Zbl 0324.58020
[42] Sogge, C. D., Concerning the \(L^p\) norm of spectral cluster of second-order elliptic operators on compact manifolds, J. Funct. Anal., 77, 123-138 (1988) · Zbl 0641.46011
[43] Sogge, C. D., Fourier Integrals in Classical Analysis, Cambridge Tracts in Mathematics, vol. 105 (1993), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0783.35001
[44] Sogge, C. D., Kakeya-Nikodygm averages and \(L^p\)-norms of eigenfunctions, Tohoku Math. J., 63, 519-538 (2011) · Zbl 1234.35156
[45] Sogge, C. D., Hangzhou Lectures on Eigenfunctions of the Laplacian, Annals of Mathematics Studies, vol. 188 (2014), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1312.58001
[46] Sogge, C. D., Localized lp-estimates of eigenfunctions: a note on an article of Hezari and Riviere, Adv. Math., 289, 384-396 (2016) · Zbl 1331.58036
[47] Sogge, C. D.; Xi, Y.; Zhang, C., Geodesic period integrals of eigenfunctions on Riemannian surfaces and the Gauss-Bonnet theorem, Camb. J. Math., 5, 1, 123-151 (2017) · Zbl 1377.35204
[48] Sogge, C. D.; Zelditch, S., Riemannian manifolds with maximal eigenfunction growth, Duke Math. J., 114, 3, 387-437 (2002) · Zbl 1018.58010
[49] Stein, E.; Wainger, S., The estimation of an integral arising in multiplier transformations, Stud. Math., 35, 101-104 (1970) · Zbl 0202.12401
[50] Tacy, M., Semiclassical l p estimates of quasimodes on submanifolds, Commun. Partial Differ. Equ., 35, 8, 1538-1562 (2010) · Zbl 1205.35352
[51] Tataru, D., On the regularity of boundary traces for the wave equation, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 26, 1, 185-206 (1998) · Zbl 0932.35136
[52] Wyman, E. L., Explicit bounds on integrals of eigenfunctions over curves in surfaces of nonpositive curvature, J. Geom. Anal., 1-29 (2019)
[53] Xi, Y.; Zhang, C., Improved critical eigenfunction restriction estimates on Riemannian surfaces with nonpositive curvature, Commun. Math. Phys., 350, 3, 1299-1325 (2017) · Zbl 1360.58024
[54] Zelditch, S., Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., 55, 4, 919-941 (1987) · Zbl 0643.58029
[55] Zelditch, S., Kuznecov sum formulae and Szegö limit formulae on manifolds, Commun. Partial Differ. Equ., 17, 1-2, 221-260 (1992) · Zbl 0749.58062
[56] Zelditch, S.; Zworski, M., Ergodicity of eigenfunctions for ergodic billiards, Commun. Math. Phys., 175, 3, 673-682 (1996) · Zbl 0840.58048
[57] Zhang, C., Improved critical eigenfunction restriction estimates on Riemannian manifolds with constant negative curvature, J. Funct. Anal., 272, 11, 4642-4670 (2017) · Zbl 1368.58017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.