×

Analytical inversion of the operator matrix for the problem of diffraction by a cylindrical segment in Sobolev spaces. (English. Russian original) Zbl 1467.45018

Comput. Math. Math. Phys. 61, No. 3, 424-430 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 3, 450-456 (2021).
Summary: A vector problem of electromagnetic-wave diffraction by a cylinder is described by a system of two two-dimensional integro-differential equations. After expanding the unknown functions and the right-hand sides in Fourier series, the problem reduces to systems of one-dimensional equations. Analytical inversion of the principal operator of one-dimensional systems in Sobolev spaces is considered. Theorems on the boundedness and bounded invertibility of the principal operator are proved. The inverse operator is represented by series and in closed form: the elements of the inverse matrix are integral or integro-differential operators.

MSC:

45K05 Integro-partial differential equations
45P05 Integral operators
45Q05 Inverse problems for integral equations
15A10 Applications of generalized inverses
78A45 Diffraction, scattering
Full Text: DOI

References:

[1] Sochilin, A. V.; Eminov, S. I., Method of eigenfunctions of singular operators in the theory of diffraction by a thick vibrator, Tech. Phys., 43, 434-438 (1998) · doi:10.1134/1.1259000
[2] Stephan, E. P., Boundary integral equations for screen problem in R^3, Integral Equations Operator Theory, 10, 236-257 (1987) · Zbl 0653.35016 · doi:10.1007/BF01199079
[3] Il’inskii, A. S.; Smirnov, Yu. G., Integral equations for problems of wave diffraction by screens, Radiotekh. Elektron., 39, 23-31 (1994)
[4] A. S. Ilyinsky and Yu. G. Smirnov, Electromagnetic Wave Diffraction by Conducting Screens (IPRZhR, Moscow, 1996; VSP, Utrecht, 1998).
[5] Smirnov, Yu. G., Mathematical Methods for Electrodynamic Problems (2009), Penza: Inf.-Izd. Tsentr Penz. Gos. Univ., Penza
[6] Eskin, G. I., Boundary Value Problems for Elliptic Pseudodifferential Equations (1973), Moscow: Nauka, Moscow
[7] G. M. Vainikko, I. K. Lifanov, and L. N. Poltavskii, Hypersingular Integral Equations and Their Applications (Yanus-K, Moscow, 2001; Chapman & Hall/CRC, London, 2004). · Zbl 1061.45001
[8] Balandin, M. Yu.; Shurina, E. P., Vector Finite-Element Method (2001), Novosibirsk: Novosib. Gos. Tekh. Univ., Novosibirsk
[9] M. A. Shubin, Pseudodifferential Operators and Spectral Theory (Springer-Verlag, New York, 1987; Mosk. Gos. Univ., Moscow, 2001). · Zbl 0616.47040
[10] Eminov, S. I.; Eminova, V. S., Justification of the Galerkin method for hypersingular equations, Comput. Math. Math. Phys., 56, 417-425 (2016) · Zbl 1346.65074 · doi:10.1134/S0965542516030039
[11] Eminov, S. I., An orthonormal basis in Sobolev-Slobodetskii spaces on an interval, Differ. Equations, 41, 594-597 (2005) · Zbl 1087.45500 · doi:10.1007/s10625-005-0195-1
[12] Vorovich, I. I.; Aleksandrov, V. M.; Babeshko, V. A., Nonclassical Mixed Problems in Elasticity (1974), Moscow: Nauka, Moscow
[13] F. D. Gakhov, Boundary Value Problems (Nauka, Moscow, 1977; Dover, New York, 1990). · Zbl 0449.30030
[14] Lions, J.-L.; Magenes, E., Problémes aux limites non homogénes et applications (1968), Paris: Dunod, Paris · Zbl 0165.10801
[15] M. Sh. Birman and M. Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space (Leningrad. Gos. Univ., Leningrad, 1980; Reidel, Dordrecht, 1987). · Zbl 0744.47017
[16] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Fizmatlit, Moscow, 1963; Academic, New York, 1980). · Zbl 0918.65002
[17] Sochilin, A. V.; Eminov, S. I., A numerical-analytic method for solving integral equations of dipole antennas, J. Commun. Technol. Electron., 53, 523-528 (2008) · doi:10.1134/S1064226908050057
[18] Vasil’ev, E. N., Excitation of Bodies of Revolution (1987), Moscow: Radio i Svyaz, Moscow
[19] Eminov, S. I., Structure of integral equations of diffraction by a strip and a section of a circular cylinder, Radiophys. Quantum Electron., 60, 978-987 (2018) · doi:10.1007/s11141-018-9862-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.