×

An approach to finding the asymptotics of polynomials given by recurrence relations. (English) Zbl 1467.42041

Summary: Many orthogonal polynomials \(u(n,z)\) (\(n\) is the number of the polynomial, \(z\) is its argument), for example, the Chebyshev, Hermite, Laguerre, Legendre, and other polynomials, are determined by recurrence relations (or finite-difference equations) of the second order. For large numbers \(n\), they are approximated by exponential, trigonometric, or special functions of a compound argument. For example, Hermite polynomials are approximated by the Plancherel-Rotach formulas, in which the special function is Ai, the Airy function, the Legendre polynomials are approximated by the zero-order Bessel function, etc. In the paper, an approach is developed for finding asymptotics of this type, which are uniform in this case (and unified) with respect to the variable \(z\). The approach is based on the passage from discrete equations to continuous pseudodifferential equations and the subsequent application of the semiclassical approximation to these equations with complex phases. This is a further development of the considerations proposed in the papers of A. I. Aptekarev et al. [“Asymptotics of the Plancherel-Rotach type for jointly orthogonal Herite polynomials and recurrent relations”, Izv. Math. (to appear)], A. I. Aptekarev and D. N. Tulyakov [Sb. Math. 205, No. 12, 1696–1719 (2014; Zbl 1317.39001); translation from Mat. Sb. 205, No. 12, 17–40 (2014)], D. N. Tulyakov [ibid. 201, No. 9, 1355–1402 (2010; Zbl 1242.39002); translation from Mat. Sb. 201, No. 9, 111–158 (2010)] devoted to asymptotics of the Plancherel-Rotach type for Hermite polynomials and a subclass of Hermite type orthogonal polynomials with multiple indices.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
39A06 Linear difference equations
Full Text: DOI

References:

[1] Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F., Higher Transcendental Functions, Vol. I (Bateman Manuscript Project) (1953), NY: McGraw-Hill Book Company, NY · Zbl 0051.30303
[2] Suetin, P. K., Classical Orthogonal Polynomials (2005), Moscow: Fizmatlit, Moscow · Zbl 1149.30011
[3] Olver, F. W. J., Asymptotics and Special Functions (1974), New York: Academic Press, New York · Zbl 0303.41035
[4] Geronimo, J. S.; Bruno, O.; Assche, W. van, WKB and Turning Point Theory for Second-Order Difference Equations, 101-138 (2002), Poland: Bedleo, Poland · Zbl 1064.39018
[5] Deift, P.; Zhou, X., A Steepest Descent Method for Oscillatory Riemann-Hilbert Problems. Asymptotics for the MKdV Equation, Ann. Math., 137, 295тАУ-368 (1993) · Zbl 0771.35042 · doi:10.2307/2946540
[6] Bleher, P.; Its, A., Semiclassical Asymptotics of Orthogonal Polynomials, Riemann-Hilbert Problem, and the Universality in the Matrix Model, Ann. Math., 150, 185-тАУ266 (1999) · Zbl 0956.42014 · doi:10.2307/121101
[7] Deift, P.; Kriecherbauer, T.; McLaughlin, K. T.-R.; Venakides, S.; Zhou, X., Strong Asymptotics of Orthogonal Polynomials with Respect to Exponential Weights, Comm. Pure Appl. Math, 52, 1491-1552 (1999) · Zbl 1026.42024 · doi:10.1002/(SICI)1097-0312(199912)52:12<1491::AID-CPA2>3.0.CO;2-#
[8] Tulyakov, D. N., Plancherel-Rotach Type Asymptotics for Solutions of Linear Recurrence Relations with Rational Coefficients, Sb. Math., 201, 9, 1355-1402 (2010) · Zbl 1242.39002 · doi:10.1070/SM2010v201n09ABEH004115
[9] Aptekarev, A. I.; Tulyakov, D. N., The Leading Term of the Plancherel-Rotach Asymptotic Formula for Solutions of Recurrence Relations, Sb. Math., 205, 12, 1696-1719 (2014) · Zbl 1317.39001 · doi:10.1070/SM2014v205n12ABEH004435
[10] Dobrokhotov, S. Yu.; Tsvetkova, A. V., Lagrangian Manifolds Related to the Asymptotics of Hermite Polynomials, Math. Notes, 104, 6, 810-822 (2018) · Zbl 1409.42019 · doi:10.1134/S0001434618110263
[11] Aptekarev, A. I.; Dobrokhotov, S. Yu.; Tulyakov, D. N.; Tsvetkova, A. V., Asymptotics of the Plancherel-Rotach Type for Jointly Orthogonal Herite Polynomials and Recurrent Relations, Izv. Math., 0, 0 (0000)
[12] Maslov, V. P., The Characteristics of Pseudo-Differential Operators and Difference Schemes, Actes du Congrès International des Mathématiciens, 2, 755-769 (1971) · Zbl 0244.35072
[13] Wang, Z.; Wong, R., Asymptotic Expansions for Second-Order Linear Difference Equations with a Turning Point, Numer. Math., 94, 147-194 (2003) · Zbl 1030.39016 · doi:10.1007/s00211-002-0416-y
[14] Maslov, V. P., Operational Methods (1976), Moscow: Mir, Moscow · Zbl 0449.47002
[15] Maslov, V. P., The Complex WKB Method for Nonlinear Equations. I (1994), Basel: Birkhäuser Verlag, Basel · Zbl 0811.35088 · doi:10.1007/978-3-0348-8536-2
[16] Sjostrand, J.; Mellin, A., Fourier Integral Operators with Complex Valuedphase Functions, Proc. of the Internat. Conf. (Nice) on Fourier Integral Operators, 0, 0 (1974)
[17] Mishchenko, A. S.; Sternin, B. Yu.; Shatalov, V. E., Geometry of Lagrangian Manifolds and the Canonical Maslov Operator in Complex Phase Space, J. Soviet Math., 13, 1, 1-23 (1980) · Zbl 0437.58007 · doi:10.1007/BF01084108
[18] Kucherenko, V. V., Asymptotic of the Solution of Cauchy’s Problem for Equations with Complex Characteristics, J. Soviet Math., 13, 1, 24-81 (1980) · Zbl 0457.35096 · doi:10.1007/BF01084109
[19] Maslov, V. P.; Danilov, V. G., Pontryagin’s Duality Principle for Calculation of an Effect of Cherenkov’s Type in Crystals and Difference Schemes. II, Proc. Steklov Inst. Math., 167, 103-116 (1986) · Zbl 0594.65036
[20] Belov, V. V.; Dobrokhotov, S. Yu., Semiclassical Maslov Asymptotics with Complex Phases. I. General Approach, Theoret. and Math. Phys., 92, 2, 843-868 (1992) · doi:10.1007/BF01015553
[21] Fedoryuk, M. V., Asymptotic Methods for Linear Ordinary Differential Equations (1983), Moscow: Nauka, Moscow · Zbl 0538.34001
[22] Buslaev, V. S.; Fedotov, A. A., The Complex WKB Method for the Harper Equation, St. Petersburg Math. J., 6, 3, 495-517 (1995)
[23] Fedotov, A. A.; Shchetka, E. V., Complex WKB Method for the Difference Schrödinger Equation with the Potential Being a Trigonometric Polynomial, St. Petersburg Math. J., 29, 2, 363-381 (2018) · Zbl 1385.39001 · doi:10.1090/spmj/1497
[24] Fedotov, A.; Klopp, F., WKB Asymptotics of Meromorphic Solutions to Difference Equations, Appl. Anal., 0, 0 (2019)
[25] Anikin, A. Yu.; Dobrokhotov, S. Yu.; Nazaikinskii, V. E.; Tsvetkova, A. V., Uniform Asymptotic Solution in the Form of an Airy Function for Semiclassical Bound States in One-Dimensional and Radially Symmetric Problems, Theoret. and Math. Phys., 201, 3, 1742-1770 (2019) · Zbl 1441.81091 · doi:10.1134/S0040577919120079
[26] Maslov, V. P.; Fedoryuk, M. V., Semiclassical Approximation in Quantum Mechanics (1981), Dordrecht-Boston, Mass.: D. Reidel Publishing Co., Dordrecht-Boston, Mass. · Zbl 0458.58001 · doi:10.1007/978-94-009-8410-3
[27] Maslov, V. P., Theory of Perturbations and Asymptotic Methods (1965), Moscow: Izd. Moskov. Univ., Moscow
[28] Babich, V. M.; Buldyrev, V. S., Asymptotic Methods in Diffraction Problems of Short Waves: Method of Reference Problems (1972), Moscow: Nauka, Moscow
[29] Slavyanov, S. Yu., Asymptotics of Solutions of the One-Dimensional Schrödinger Equation (1990), Leningrad: Izd. Leningrad Univ., Leningrad · Zbl 0791.34002
[30] Dobrokhotov, S. Yu.; Minenkov, D. S.; Shlosman, S. B., Asymptotics of Wave Functions of the Stationary Schrödinger Equation in the Weyl Chamber, Theoret. and Math. Phys., 197, 2, 1626-1634 (2018) · Zbl 1411.81090 · doi:10.1134/S0040577918110065
[31] Dobrokhotov, S. Yu.; Nazaikinskii, V. E., Efficient Formulas for the Maslov Canonical Operator near a Simple Caustic, Russ. J. Math. Phys., 25, 4, 545-552 (2018) · Zbl 1406.81036 · doi:10.1134/S106192081804012X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.