×

Iterated extensions and uniserial length categories. (English) Zbl 1467.18016

Summary: In this paper, we study length categories using iterated extensions. We fix a field \(k\), and for any family \(\mathsf{S}\) of orthogonal \(k\)-rational points in an Abelian \(k\)-category \(\mathcal{A} \), we consider the category \(\mathbf{Ext}(\mathsf{S})\) of iterated extensions of \(\mathsf{S}\) in \(\mathcal{A} \), equipped with the natural forgetful functor \(\mathbf{Ext}(\mathsf{S}) \to \mathcal{A}(\mathsf{S})\) into the length category \(\mathcal{A}(\mathsf{S})\). There is a necessary and sufficient condition for a length category to be uniserial, due to Gabriel, expressed in terms of the Gabriel quiver (or Ext-quiver) of the length category. Using Gabriel’s criterion, we give a complete classification of the indecomposable objects in \(\mathcal{A}(\mathsf{S})\) when it is a uniserial length category. In particular, we prove that there is an obstruction for a path in the Gabriel quiver to give rise to an indecomposable object. The obstruction vanishes in the hereditary case, and can in general be expressed using matric Massey products. We discuss the close connection between this obstruction, and the noncommutative deformations of the family \(\mathsf{S}\) in \(\mathcal{A}\). As an application, we classify all graded holonomic \(D\)-modules on a monomial curve over the complex numbers, obtaining the most explicit results over the affine line, when \(D\) is the first Weyl algebra. We also give a non-hereditary example, where we compute the obstructions and show that they do not vanish.

MSC:

18E10 Abelian categories, Grothendieck categories
16G99 Representation theory of associative rings and algebras
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials

References:

[1] Amdal, IK; Ringdal, F., Catégories unisérielles, C. R. Acad. Sci. Paris Sér A-B, 267, A247-A249 (1968) · Zbl 0159.02201
[2] Boutet de Monvel, L., \({\mathcal D}\) D-modules holonômes réguliers en une variable. Mathematics and Physics (Paris, 1979/1982), Progr. Math., vol. 37, 313-321 (1983), Boston: Birkhäuser, Boston · Zbl 0578.35080
[3] Chen, X.-W., Krause, H.: Introduction to coherent sheaves on weighted projective lines. arXiv:0911.4473 (2009)
[4] Coutinho, SC, A Primer of Algebraic D-Modules London Mathematical Society Student Texts, vol. 33 (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0848.16019 · doi:10.1017/CBO9780511623653
[5] Eriksen, E., Differential operators on monomial curves, J. Algebra, 264, 1, 186-198 (2003) · Zbl 1086.13507 · doi:10.1016/S0021-8693(03)00144-3
[6] Eriksen, E: Graded Holonomic D-modules on Monomial Curves. arXiv:1803.04367 (2018)
[7] Eriksen, E.; Laudal, OA; Siqveland, A., Noncommutative Deformation Theory, Monographs and Research Notes in Mathematics (2017), Boca Raton: CRC Press, Boca Raton · Zbl 1369.14006 · doi:10.1201/9781315156057
[8] Eriksen, E., Computing noncommutative deformations of presheaves and sheaves of modules, Canad. J. Math., 62, 3, 520-542 (2010) · Zbl 1196.14016 · doi:10.4153/CJM-2010-015-6
[9] Gabriel, P., Indecomposable Representations. II, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), 81-104 (1973), London: Academic Press, London · Zbl 0276.16001
[10] Laudal, OA, Noncommutative deformations of modules, Homology Homotopy Appl., 4, 2, part 2, 357-396 (2002) · Zbl 1013.16018 · doi:10.4310/HHA.2002.v4.n2.a17
[11] May, JP, Matric Massey products, J. Algebra, 12, 533-568 (1969) · Zbl 0192.34302 · doi:10.1016/0021-8693(69)90027-1
[12] Quillen, D., On the endomorphism ring of a simple module over an enveloping algebra, Proc. Amer. Math. Soc., 21, 171-172 (1969) · Zbl 0188.08901
[13] Ringel, CM, Representations of K-species and bimodules, J. Algebra, 41, 2, 269-302 (1976) · Zbl 0338.16011 · doi:10.1016/0021-8693(76)90184-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.