×

Exponentially many \(\mathbb{Z}_5\)-colorings in simple planar graphs. (English) Zbl 1467.05078

Summary: Every planar simple graph with \(n\) vertices has at least \(2^{n / 9} \mathbb{Z}_5\)-colorings.

MSC:

05C15 Coloring of graphs and hypergraphs
05C10 Planar graphs; geometric and topological aspects of graph theory

References:

[1] DeVos, M.; Langhede, R.; Mohar, B.; Šámal, R., Many flows in the group connectivity setting
[2] Dvořák, Z.; Mohar, B.; Šámal, R., Exponentially many nowhere-zero \(\mathbb{Z}_3-, \mathbb{Z}_4\)-, and \(\mathbb{Z}_6\)-flows, Combinatorica, 6, 1237-1253 (2019) · Zbl 1449.05126
[3] Dvořák, Z.; Postle, L., Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8, J. Comb. Theory, Ser. B, 129, 38-54 (2018) · Zbl 1379.05034
[4] Jaeger, F.; Linial, N.; Payan, C.; Tarsi, M., Group connectivity of graphs – a nonhomogeneous analogue of nowhere-zero flow properties, J. Comb. Theory, Ser. B, 56, 165-182 (1992) · Zbl 0824.05043
[5] Král’, D.; Pangrác, O.; Voss, H.-J., A note on group colorings of planar graphs, J. Graph Theory, 50, 123-129 (2005) · Zbl 1077.05044
[6] Langhede, R.; Thomassen, C., Group connectivity and group coloring: small groups versus large groups, Electron. J. Comb., 27, Article P1.49 pp. (2020) · Zbl 1435.05098
[7] Lovász, L. M.; Thomassen, C.; Wu, Y.; Zhang, C.-Q., Nowhere-zero 3-flows and modulo k-orientations, J. Comb. Theory, Ser. B, 103, 587-598 (2013) · Zbl 1301.05154
[8] Mohar, B.; Thomassen, C., Graphs on Surfaces (2001), Johns Hopkins University Press: Johns Hopkins University Press Baltimore · Zbl 0979.05002
[9] Thomassen, C., Every planar graph is 5-choosable, J. Comb. Theory, Ser. B, 62, 180-181 (1994) · Zbl 0805.05023
[10] Thomassen, C., Exponentially many 5-list-colorings of planar graphs, J. Comb. Theory, Ser. B, 97, 571-583 (2007) · Zbl 1123.05043
[11] Thomassen, C., Many 3-colorings of triangle-free planar graphs, J. Comb. Theory, Ser. B, 97, 334-349 (2007) · Zbl 1118.05038
[12] Thomassen, C., The weak 3-flow conjecture and the weak circular flow conjecture, J. Comb. Theory, Ser. B, 102, 521-529 (2012) · Zbl 1239.05083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.