×

Spectral clustering of combinatorial fullerene isomers based on their facet graph structure. (English) Zbl 1466.92245

Summary: After Curl, Kroto and Smalley were awarded 1996 the Nobel Prize in chemistry, fullerenes have been subject of much research. One part of that research is the prediction of a fullerene’s stability using topological descriptors. It was mainly done by considering the distribution of the twelve pentagonal facets on its surface, calculations mostly were performed on all isomers of \(C_{40}\), \(C_{60}\) and \(C_{80}\). This paper suggests a novel method for the classification of combinatorial fullerene isomers using spectral graph theory. The classification presupposes an invariant scheme for the facets based on the Schlegel diagram. The main idea is to find clusters of isomers by analyzing their graph structure of hexagonal facets only. We also show that our classification scheme can serve as a formal stability criterion, which became evident from a comparison of our results with recent quantum chemical calculations [R. Sure et al., “Comprehensive study of all 1812 \(C_60\) isomers”, Phys. Chem. Chem. Phys. 19, 14296–14305 (2017; doi:10.1039/C7CP00735C)]. We apply our method to classify all isomers of \(C_{60}\) and give an example of two different cospectral isomers of \(C_{44}\). Calculations are done with our own Python scripts available at [A. Bille et al., in: Fullerene database and classification software, (2020), https://www.uni-ulm.de/mawi/mawi-stochastik/forschung/fullerene-database/]. The only input for our algorithm is the vector of positions of pentagons in the facet spiral. These vectors and Schlegel diagrams are generated with the software package Fullerene [P. Schwerdtfeger et al., “Fullerene – a software package for constructing and analyzing structures of regular fullerenes”, J. Comput. Chem. 34, No. 17, 1508–1526 (2013; doi:10.1002/jcc.23278)].

MSC:

92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)
05C92 Chemical graph theory

References:

[1] Andova, V.; Kardoš, F.; Škrekovski, R., Mathematical aspects of fullerenes, Ars Mathematica Contemporanea, 11, 353-379 (2016) · Zbl 1355.05095 · doi:10.26493/1855-3974.834.b02
[2] Babić, D.; Bassoli, S.; Casartelli, M.; Cataldo, F.; Vac, A.; Ori, O.; York, B., Generalized Stone-Wales transformations, Mol. Simul., 14, 395-401 (1995) · doi:10.1080/08927029508022032
[3] Bapat, RB, Graphs and Matrices (2010), Berlin: Springer, Berlin · Zbl 1248.05002 · doi:10.1007/978-1-84882-981-7
[4] Bača, M.; Horváthová, J.; Mokrišová, M.; Suhányiova, A., On topological indices of fullerenes, Appl. Math. Comput., 25, 154-161 (2015) · Zbl 1328.92087
[5] A. Bille, T. Frauendorfer, F. Krötz, M. Willmann, Fullerene database and classification software, https://www.uni-ulm.de/mawi/mawi-stochastik/forschung/fullerene-database/. Accessed 20 Oct 2020
[6] G. Brinkmann, K. Coolsaet, J. Goedgebeur, H. Mélot, The house of graphs: a database of interesting graphs, www.hog.grinvin.org/fullerenes. Accessed 07 Feb 2019 · Zbl 1292.05254
[7] Brinkmann, G.; Dress, AWM, A constructive enumeration of fullerenes, J. Algorithms, 23, 345-358 (1997) · doi:10.1006/jagm.1996.0806
[8] Brinkmann, G.; Goedgebeur, J.; McKay, B., The generation of fullerenes, J. Chem. Inf. Model., 52, 2910-2918 (2012) · doi:10.1021/ci3003107
[9] Brouwer, AE; Haemers, WH, Spectra of Graphs (2012), Berlin: Springer, Berlin · Zbl 1231.05001 · doi:10.1007/978-1-4614-1939-6
[10] Brualdi, RA; Cvetković, D., A Combinatorial Approach to Matrix Theory and its Applications (2009), New York: Chapman Hall/CRC Press, New York · Zbl 1155.15003
[11] Buchstaber, VM; Erokhovets, NY, Finite sets of operations sufficient to construct any fullerene from C_20, Struct. Chem., 28, 1, 225-234 (2017) · doi:10.1007/s11224-016-0885-8
[12] V.M. Buchstaber, N.Y. Erokhovets. Fullerenes, polytopes and toric topology, in Combinatorial and toric homotopy, volume 35 of Lecture Notes Series Institute for Mathematical Sciences, National University of Singapore, pp. 67-178. World Scientific Publishing Co Pte Ltd, Hackensack, NJ, (2018) · Zbl 1414.52006
[13] Cvetković, D.; Rowlinson, P., The largest eigenvalue of a graph: a survey, Linear Multilinear Algebra, 28, 3-33 (1990) · Zbl 0744.05031 · doi:10.1080/03081089008818026
[14] Cvetković, D.; Rowlinson, P.; Simić, S., An Introduction to the Theory of Graph Spectra (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1211.05002
[15] Diudea, MV; Gutman, I.; Lorentz, J., Molecular Topology (2001), New York: Nova Science Publisher, New York
[16] Erokhovets, NY, Construction of fullerenes and Pogorelov polytopes with 5-, 6- and one 7-gonal face, Symmetry, 10, 67-95 (2018) · Zbl 1392.52006 · doi:10.3390/sym10030067
[17] Fowler, PW; Manolopoulos, DE, An Atlas of Fullerenes (1995), London: Clarendon Press, London
[18] F.R. Gantmacher, Matrix theory. Fizmathlit, 5 edn (2004)
[19] Grünbaum, B., Convex Polytopes (2003), Berlin: Springer, Berlin · Zbl 1024.52001 · doi:10.1007/978-1-4613-0019-9
[20] Hayat, S.; Wang, S.; Liu, J-B, Valency-based topological descriptors of chemical networks and their applications, Appl. Math. Model., 60, 164-178 (2018) · Zbl 1480.92243 · doi:10.1016/j.apm.2018.03.016
[21] Hirsch, A.; Brettreich, M.; Wudl, F., Fullerenes: Chemistry and Reactions (2006), New York: Wiley-VCH, New York
[22] Kac, M., Can one hear the shape of a drum?, Am. Math. Monthly, 73, 4, 1-23 (1966) · Zbl 0139.05603 · doi:10.2307/2313748
[23] Khamatgalimov, AR; Kovalenko, VI, Electronic structure and stability of C80 fullerene IPR isomers, Fullerenes Nanotubes Carbon Nanostruct., 19, 7, 599-604 (2011) · doi:10.1080/1536383X.2010.504951
[24] A. Kurosh, Higher algebra. Mir Publishers, Moscow, 1975. Translated from the tenth Russian edition by George Yankovsky, Second printing
[25] Manolopoulos, DE; Fowler, PW, A fullerene without a spiral, Chem. Phys. Lett., 204, 1-7 (1993) · doi:10.1016/0009-2614(93)85597-H
[26] Manolopoulos, DE; May, JC; Down, SE, Theoretical studies of the fullerenes: C_34 to C_70, Chem. Phys. Lett., 181, 105-111 (1991) · doi:10.1016/0009-2614(91)90340-F
[27] Marcaccio, M.; Paolucci, F., Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes. Topics in Current Chemistry (2014), Berlin: Springer, Berlin
[28] The Mathworks, Inc., Natick, Massachusetts, USA. MATLAB Release R2018b
[29] C. Meyer, Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics (2000) · Zbl 0962.15001
[30] Mojica, M.; Alonso, JA; Mendez, F., Synthesis of fullerenes, J. Phys. Org. Chem., 26, 526-539 (2013) · doi:10.1002/poc.3121
[31] Parr, RG; Yang, W., Density-Functional Theory of Atoms and Molecules (1989), Oxford: Wiley, Oxford
[32] Rukhovich, AD, On the growth rate of the number of fullerenes, Russian Math. Surv., 73, 4, 734-736 (2018) · Zbl 1419.52012 · doi:10.1070/RM9837
[33] Schwerdtfeger, P.; Wirz, L.; Avery, J., Program Fullerene-a software package for constructing and analyzing structures of regular fullerenes, J. Comput. Chem., 34, 1508-1526 (2013) · doi:10.1002/jcc.23278
[34] Sure, R.; Hansen, A.; Schwerdtfeger, P.; Grimme, S., Comprehensive study of all 1812 C_60 isomers, Phys. Chem. Chem. Phys., 19, 14296-14305 (2017) · doi:10.1039/C7CP00735C
[35] W.P. Thurston, Shapes of Polyhedra and Triangulations of the Sphere, in The Epstein birthday schrift, volume 1 of Geometry and Topology Monographs, pp. 511-549. Geometry and Topology Publishing Co Ltd, (1998) · Zbl 0931.57010
[36] Van Dam, ER; Haemers, WH, Which graphs are determined by their spectrum?, Linear Algebra Appl., 373, 241-272 (2003) · Zbl 1026.05079 · doi:10.1016/S0024-3795(03)00483-X
[37] Wirz, LN; Schwerdtfeger, P.; Avery, JE, Naming polyhedra by general face-spirals -Theory and applications to fullerenes and other polyhedral molecules, Fullerenes Nanotubes Carbon Nanostruct., 26, 607-630 (2018) · doi:10.1080/1536383X.2017.1388231
[38] Ziegler, K.; Amsharov, K.; Halasz, I.; Jansen, M., Facile separation and crystal structure determination of C_2-C_82(3) fullerene, J. Inorg. Gen. Chem., 637, 1463-1466 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.