×

About the use of entropy production for the Landau-Fermi-Dirac equation. (English) Zbl 1466.76054

Summary: In this paper, we present new estimates for the entropy dissipation of the Landau-Fermi-Dirac equation (with hard or moderately soft potentials) in terms of a weighted relative Fisher information adapted to this equation. Such estimates are used for studying the large time behaviour of the equation, as well as for providing new a priori estimates (in the soft potential case). An important feature of such estimates is that they are uniform with respect to the quantum parameter. Consequently, the same estimations are recovered for the classical limit, that is the Landau equation.

MSC:

76Y05 Quantum hydrodynamics and relativistic hydrodynamics
76P99 Rarefied gas flows, Boltzmann equation in fluid mechanics
35Q35 PDEs in connection with fluid mechanics
35Q40 PDEs in connection with quantum mechanics
82D05 Statistical mechanics of gases
82D15 Statistical mechanics of liquids

References:

[1] Aizenman, M.; Bak, T., Convergence to equilibrium in a system of reacting polymers, Commun. Math. Phys., 65, 203-230 (1979) · Zbl 0458.76062 · doi:10.1007/BF01197880
[2] Alonso, RJ, Emergence of exponentially weighted \(L^p\)-norms and Sobolev regularity for the Boltzmann equation, Commun. Partial Differ. Equ., 44, 416-446 (2019) · Zbl 1507.35054 · doi:10.1080/03605302.2018.1554676
[3] Alonso, RJ; Lods, B., Two proofs of Haff’s law for dissipative gases: the use of entropy and the weakly inelastic regime, J. Math. Anal. Appl., 397, 260-275 (2013) · Zbl 1255.35176 · doi:10.1016/j.jmaa.2012.07.045
[4] Alonso, RJ; Bagland, V.; Lods, B., Uniform estimates on the Fisher information for solutions to Boltzmann and Landau equations, Kinet. Relat. Models, 12, 1163-1183 (2019) · Zbl 1420.35170 · doi:10.3934/krm.2019044
[5] Alonso, RJ; Bagland, V.; Lods, B., Long time dynamics for the Landau-Fermi-Dirac equation with hard potentials, J. Differ. Equ., 270, 596-663 (2021) · Zbl 1451.35153 · doi:10.1016/j.jde.2020.08.010
[6] Alonso, R.J., Bagland, V., Desvillettes, L., Lods, B.: On the Landau-Fermi-Dirac Equation for Soft Potentials. Work in preparation · Zbl 1451.35153
[7] Bagland, V., Well-posedness for the spatially homogeneous Landau-Fermi-Dirac equation for hard potentials, Proc. R. Soc. Edinb. Sect. A, 134, 415-447 (2004) · Zbl 1060.35115 · doi:10.1017/S0308210500003280
[8] Bagland, V.; Lemou, M., Equilibrium states for the Landau-Fermi-Dirac equation, nonlocal elliptic and parabolic problems, Banach Center Publ., 66, 29-37 (2004) · Zbl 1072.82538 · doi:10.4064/bc66-0-2
[9] Cañizo, JA; Einav, A.; Lods, B., Trend to equilibrium for the Becker-Döring equations: an analogue of Cercignani’s conjecture, Anal. PDE, 10, 1663-1708 (2017) · Zbl 1373.34021 · doi:10.2140/apde.2017.10.1663
[10] Carlen, EA; Carvalho, MC, Entropy production estimates for Boltzmann equations with physically realistic collision kernels, J. Stat. Phys., 74, 743-782 (1994) · Zbl 0831.76074 · doi:10.1007/BF02188578
[11] Carlen, EA; Gabetta, E.; Toscani, G., Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas, Commun. Math. Phys., 199, 521-546 (1999) · Zbl 0927.76088 · doi:10.1007/s002200050511
[12] Carrapatoso, K., Exponential convergence to equilibrium for the homogeneous Landau equation with hard potentials, Bull. Sci. Math., 139, 777-805 (2015) · Zbl 1323.47064 · doi:10.1016/j.bulsci.2014.12.002
[13] Carrapatoso, K.; Desvillettes, L.; He, L., Estimates for the large time behavior of the Landau equation in the Coulomb case, Arch. Ration. Mech. Anal., 224, 381-420 (2017) · Zbl 1390.35360 · doi:10.1007/s00205-017-1078-3
[14] Carrillo, JA; Jüngel, A.; Markowich, PA; Toscani, G.; Unterreiter, A., Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., 133, 1-82 (2001) · Zbl 0984.35027 · doi:10.1007/s006050170032
[15] Carrillo, JA; Laurençot, P.; Rosado, J., Fermi-Dirac-Fokker-Planck equation: well-posedness and long-time asymptotics, J. Differ. Equ., 247, 2209-2234 (2009) · Zbl 1181.35292 · doi:10.1016/j.jde.2009.07.018
[16] Cercignani, C., H-theorem and trend to equilibrium in the kinetic theory of gases, Arch. Mech. (Arch. Mech. Stos.), 34, 231-241 (1983) · Zbl 0538.76068
[17] Chapman, S.; Cowling, TG, The Mathematical Theory of Non-uniform Gases (1970), Cambridge: Cambridge University Press, Cambridge · Zbl 0063.00782
[18] Desvillettes, L., Entropy dissipation estimates for the Landau equation in the Coulomb case and applications, J. Funct. Anal., 269, 1359-1403 (2015) · Zbl 1325.35223 · doi:10.1016/j.jfa.2015.05.009
[19] Desvillettes, L.: Entropy dissipation estimates for the Landau equation: general cross sections. In: From Particle Systems to Partial Differential Equations. III, Vol. 162, pp. 121-143. Springer (2016) · Zbl 1351.35206
[20] Desvillettes, L.: About Boltzmann’s H-Theorem for Landau equation (Autour du Théorème H de Boltzmann). In: Proceedings of the Seminar “Laurent Schwartz EDP et Applications” (2019-2020). to appear · Zbl 1497.35332
[21] Desvillettes, L.; Fellner, K., Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations, J. Math. Anal. Appl., 319, 157-176 (2006) · Zbl 1096.35018 · doi:10.1016/j.jmaa.2005.07.003
[22] Desvillettes, L.; Villani, C., On the spatially homogeneous Landau equation for hard potentials. Part I. Existence, uniqueness and smoothness, Commun. Partial Differ. Equ., 25, 179-259 (2000) · Zbl 0946.35109 · doi:10.1080/03605300008821512
[23] Desvillettes, L.; Villani, C., On the spatially homogeneous Landau equation for hard potentials. Part II : H theorem and applications, Commun. Partial Differ. Equ., 25, 261-298 (2000) · Zbl 0951.35130 · doi:10.1080/03605300008821513
[24] Desvillettes, L.; Villani, C., On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., 159, 245-316 (2005) · Zbl 1162.82316 · doi:10.1007/s00222-004-0389-9
[25] Desvillettes, L.; Mouhot, C.; Villani, C., Celebrating Cercignani’s conjecture for the Boltzmann equation, Kinet. Relat. Models, 4, 1, 277-294 (2011) · Zbl 1217.82064 · doi:10.3934/krm.2011.4.277
[26] DiPerna, RJ; Lions, P-L, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math., 130, 321-366 (1989) · Zbl 0698.45010 · doi:10.2307/1971423
[27] Gross, L., Logarithmic Sobolev inequalities, Am. J. Math., 97, 1061-1083 (1975) · Zbl 0318.46049 · doi:10.2307/2373688
[28] Jüngel, A.: Entropy methods for diffusive partial differential equations. In: SpringerBriefs in Mathematics. Springer (2016) · Zbl 1361.35002
[29] Lu, X., On spatially homogeneous solutions of a modified Boltzmann equation for Fermi-Dirac particles, J. Stat. Phys., 105, 353-388 (2001) · Zbl 1156.82380 · doi:10.1023/A:1012282516668
[30] Lu, X.; Wennberg, B., On stability and strong convergence for the spatially homogeneous Boltzmann equation for Fermi-Dirac particles, Arch. Ration. Mech. Anal., 168, 1-34 (2003) · Zbl 1044.76058 · doi:10.1007/s00205-003-0247-8
[31] Michel, P.; Mischler, S.; Perthame, B., General relative entropy inequality: an illustration on growth models, J. Math. Pures Appl., 84, 1235-1260 (2005) · Zbl 1085.35042 · doi:10.1016/j.matpur.2005.04.001
[32] Nash, JF, Continuity of solutions of parabolic and elliptic equations, Am. J. Math., 80, 931-954 (1958) · Zbl 0096.06902 · doi:10.2307/2372841
[33] Perthame, B.: Transport equations in biology. In: Frontiers in Mathematics. Birkhäuser Verlag, Basel (2007) · Zbl 1185.92006
[34] Toscani, G., Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation, Q. Appl. Math., 57, 521-541 (1999) · Zbl 1034.82041 · doi:10.1090/qam/1704435
[35] Toscani, G.; Villani, C., On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds, J. Stat. Phys., 98, 1279-1309 (2000) · Zbl 1034.82032 · doi:10.1023/A:1018623930325
[36] Villani, C., Cercignani’s conjecture is sometimes true and always almost true, Commun. Math. Phys., 234, 455-490 (2003) · Zbl 1041.82018 · doi:10.1007/s00220-002-0777-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.