×

Bi-potential and co-rotational formulations applied for real time simulation involving friction and large deformation. (English) Zbl 1466.74030

Summary: This paper concerns mainly numerical aspects for the real-time manipulation of deformable objects in the context of virtual surgery. The bi-potential method in the form of augmented Lagrangian is extended to solve multiple contact problems within real time computing requirements. Nonlinearities of large deformation are also included to describe the mechanical behavior of soft tissues. To obtain both accuracy and realism, the approximated co-rotational finite element method is applied to make a compromise between accuracy and computational cost. It is difficult to detect collisions between virtual objects at interactive rates. In this work, we use an optimal bounding volume hierarchy technique to acquire a good detecting efficiency. Two numerical examples are carried out to illustrate the efficiency, robustness and accuracy of the presented approaches.

MSC:

74L15 Biomechanical solid mechanics
74M10 Friction in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
92C10 Biomechanics

Software:

SIMEM3 Renault; SOFA
Full Text: DOI

References:

[1] Salisbury K, Conti F, Barbagli F (2004) Haptic rendering: introductory concepts. Comput Graph Appl 24:24-32 · doi:10.1109/MCG.2004.1274058
[2] Chen JX, Wechsler H, Pullen JM, Zhu Y (2001) Knee surgery assistance: patient model construction, motion simulation, and biomechanical visualization. IEEE Trans Biomed Eng 48:1042-1052 · doi:10.1109/10.942595
[3] Lee TY, Sun YN, Lin YC, Lin L (1999) Three-dimensional facial model reconstruction and plastic surgery simulation. IEEE Trans Inf Technol Biomed 3:214-220 · doi:10.1109/4233.788583
[4] Comas O, Taylor ZA, Allard J, Ourselin S, Cotin S, Passenger J (2008) Efficient nonlinear FEM for soft tissue modelling and its GPU implementation within the open source framework SOFA. In: Bello F, Edwards PJ (eds) Biomedical simulation, Springer, Heidelberg, pp 28-39
[5] Okamura AM, Simone C, O’Leary MD (2004) Force modeling for needle insertion into soft tissue. IEEE Trans Biomed Eng 51:1707-1716 · doi:10.1109/TBME.2004.831542
[6] Morris D, Sewell C, Blevins N, Barbagli F, Salisbury K (2004) A collaborative virtual environment for the simulation of temporal bone surgery. In: Barillot C, Haynor DR, Hellier P (eds) Proceedings of medical image computing and computer-assisted intervention. Springer, Heidelberg, pp 319-327
[7] Wang Y, Xiong Y, Xu K, Liu D (2013) vKASS: a surgical procedure simulation system for arthroscopic anterior cruciate ligament reconstruction. Comput Animat Virtual Worlds 24:25-41 · doi:10.1002/cav.1434
[8] Saupin G, Duriez C, Cotin S (2008) Contact model for haptic medical simulations. In: International symposium on biomedical simulation, Spinger, pp 157-165
[9] Meier U, Lopez O, Monserrat C, Juan MC, Alcaniz M (2005) Real-time deformable models for surgery simulation: a survey. Comput Methods Programs Biomed 77:183-197 · doi:10.1016/j.cmpb.2004.11.002
[10] Nealen A, Müller M, Keiser R, Boxerman E, Carlson M (2006) Physically based deformable models in computer graphics. Comput Graph Forum 25:809-836 · doi:10.1111/j.1467-8659.2006.01000.x
[11] Duriez C, Dubois F, Kheddar A, Andriot C (2006) Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Trans Vis Comput Graph 12:36-47 · doi:10.1109/TVCG.2006.13
[12] Spillman J, Becker M, Teschner M (2007) Non-iterative computation of contact forces for deformable objects. J WSCG 15:33-40
[13] Kuchenbecker KJ, Fiene J, Niemeyer G (2006) Improving contact realism through event-based haptic feedback. IEEE Trans Vis Comput Graph 12:219-230 · doi:10.1109/TVCG.2006.32
[14] Courtecuisse H, Allard J, Kerfriden P, Bordas S P A, cotin S, Duriez C (2014) Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med Image Anal 18:394-410 · doi:10.1016/j.media.2013.11.001
[15] Courtecuisse H, Jung H, Allard J, Duriez C, Lee DY, Cotin S (2010) GPU-based real-time soft tissue deformation with cutting and haptic feedback. Prog Biophys Mol Biol 103:159-168 · doi:10.1016/j.pbiomolbio.2010.09.016
[16] Garre C, Otaduy MA (2010) Haptic rendering of objects with rigid and deformable parts. Comput Graph 34:689-697 · doi:10.1016/j.cag.2010.08.006
[17] Francavilla A, Zienkiewicz OC (1975) A note on numerical computation of elastic contact problems. Int J Numer Methods Eng 9:913-924 · doi:10.1002/nme.1620090410
[18] Otaduy MA, Lin MC (2006) A modular haptic rendering algorithm for stable and transparent 6-dof manipulation. IEEE Trans Robot 22:751-762 · doi:10.1109/TRO.2006.876897
[19] Redon S, Kheddar A, Coquillart S (2002) Gauss’ least constraints principle and rigid body simulations. In: IEEE international conference on proceedings of robotics and automation, pp 517-522
[20] Saupin G, Duriez C, Cotin S, Grisoni L (2008) Efficient contact modeling using compliance warping. In: Computer graphics international, Istanbul, Turkey
[21] González D, Alfaro I, Quesada C, Cueto E, Chinesta F (2015) Computational vademecums for the real-time simulation of haptic collision between nonlinear solids. Comput Methods Appl Mech Eng 283:210-223 · doi:10.1016/j.cma.2014.09.029
[22] Giacoma A, Dureisseix D, Gravouil A, Rochette M (2015) Toward an optimal a priori reduced basis strategy for frictional contact problems with LATIN solver. Comput Methods Appl Mech Eng 283:1357-1381 · Zbl 1423.74648 · doi:10.1016/j.cma.2014.09.005
[23] De Saxcé G, Feng Z-Q (1998) The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Math Comput Model 28:225-245 · Zbl 1126.74341 · doi:10.1016/S0895-7177(98)00119-8
[24] Acary V, Brogliato B (2008) Numerical methods for nonsmooth dynamical systems. Springer, Heidelberg · Zbl 1173.74001 · doi:10.1007/978-3-540-75392-6
[25] Sederberg TW, Parry SR (1986) Free-form deformation of solid geometric models. In: ACM SIGGRAPH computer graphics. ACM, pp 151-160
[26] Gibson S, Fyock C, Grimson E, Kanade T, Kikinis R, Lauer H, McKenzie N, Mor A, Nakajima S, Ohkami H et al (1998) Volumetric object modeling for surgical simulation. Med Image Anal 2:121-132 · doi:10.1016/S1361-8415(98)80007-8
[27] Suzuki S, Suzuki N, Hattori A, Uchiyama A, Kobayashi S (2004) Sphere-filled organ model for virtual surgery system. IEEE Trans Med Imaging 23:714-722 · doi:10.1109/TMI.2004.826947
[28] Waters K (1987) A muscle model for animation three-dimensional facial expression. Comput Graph 21:17-24 · doi:10.1145/37402.37405
[29] Chen DT, Zeltzer D (1992) Pump it up. In: Computer animation of a biomechanically based model of muscle using the finite element method. ACM
[30] Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans Vis Comput Graph 5:62-73 · Zbl 0985.68719 · doi:10.1109/2945.764872
[31] Celniker G, Gossard D (1991) Deformable curve and surface finite-elements for free-form shape design. In: ACM SIGGRAPH computer graphics. ACM, pp 257-266
[32] James D, Pai D, Dinesh K (1999) ArtDefo: accurate real time deformable objects. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques, ACM, pp 65-72
[33] De S, Bathe KJ (2000) The method of finite spheres. Comput Mech 4:329-345 · Zbl 0952.65091 · doi:10.1007/s004660050481
[34] Niroomandi S, Alfaro I, Cueto E, Chinesta F (2008) Real-time deformable models of non-linear tissues by model reduction techniques. Comput Method Programs Biomed 91:223-231 · doi:10.1016/j.cmpb.2008.04.008
[35] Müller M, Dorsey J, Mcmillan L, Jagnow R, Cutler B (2002) Stable real-time deformations. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on computer animation, ACM, pp 49-54
[36] Bedkowski J, Masowski A (2012) GPGPU computation in mobile robot applications. Int J Electr Eng Inf 4:15-26
[37] Luque RG, Comba JLD, Freitas CMDS (2005) Broad-phase collision detection using semi-adjusting BSP-trees. In: Proceedings of the 2005 symposium on interactive 3D graphics and games, ACM, pp 179-186
[38] Bergen G (1997) Efficient collision detection of complex deformable models using AABB trees. J Graph Tools 4:1-13 · Zbl 0927.68100 · doi:10.1080/10867651.1997.10487480
[39] Cameron S (1997) Enhancing GJK: Computing minimum and penetration distances between convex polyhedra. In: ICRA, Citeseer, pp 20-25
[40] Govindaraju NK, Knott D, Jain N, Kabul I, Tamstorf R, Gayle R, Lin MC, Manocha D (2005) Interactive collision detection between deformable models using chromatic decomposition. In: ACM transactions on graphics, ACM, pp 991-999
[41] Ericson C (2004) Real-time collision detection. CRC Press, Boca Raton · doi:10.1201/b14581
[42] De Saxcé G, Feng Z-Q (1991) New inequality and functional for contact with friction: the implicit standard material approach. Mech Struct Mach 19:301-325 · doi:10.1080/08905459108905146
[43] Jourdan F, Alart P, Jean M (1998) A Gauss-Seidel like algorithm to solve frictional contact problems. Comput Methods Appl Mech Eng 155:31-47 · Zbl 0961.74080 · doi:10.1016/S0045-7825(97)00137-0
[44] Feng ZQ. http://lmee.univ-evry.fr/ feng/FerImpact.html
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.