×

A unified principled framework for resampling based on pseudo-populations: asymptotic theory. (English) Zbl 1466.62241

Summary: In this paper, a class of resampling techniques for finite populations under \(\pi\) ps sampling design is introduced. The basic idea on which they rest is a two-step procedure consisting in: (i) constructing a “pseudo-population” on the basis of sample data; (ii) drawing a sample from the predicted population according to an appropriate resampling design. From a logical point of view, this approach is essentially based on the plug-in principle by Efron, at the “sampling design level”. Theoretical justifications based on large sample theory are provided. New approaches to construct pseudo populations based on various forms of calibrations are proposed. Finally, a simulation study is performed.

MSC:

62D05 Sampling theory, sample surveys
62G09 Nonparametric statistical resampling methods
62E20 Asymptotic distribution theory in statistics

References:

[1] Antal, E. and Tillé, Y. (2011). A direct bootstrap method for complex sampling designs from a finite population. J. Amer. Statist. Assoc. 106 534-543. · Zbl 1232.62030 · doi:10.1198/jasa.2011.tm09767
[2] Beaumont, J.-F. and Patak, Z. (2012). On the generalized bootstrap for sample surveys with special attention to Poisson sampling. Int. Stat. Rev. 80 127-148. · Zbl 1418.62096 · doi:10.1111/j.1751-5823.2011.00166.x
[3] Berger, Y.G. (1998). Rate of convergence to normal distribution for the Horvitz-Thompson estimator. J. Statist. Plann. Inference 67 209-226. · Zbl 1067.62507 · doi:10.1016/S0378-3758(97)00107-9
[4] Berger, Y.G. (2005). Variance estimation with Chao’s sampling scheme. J. Statist. Plann. Inference 127 253-277. · Zbl 1083.62008 · doi:10.1016/j.jspi.2003.08.014
[5] Berger, Y.G. (2011). Asymptotic consistency under large entropy sampling designs with unequal probabilities. Pakistan J. Statist. 27 407-426. · Zbl 1509.62024
[6] Bertail, P., Chautru, E. and Clémençon, S. (2017). Empirical processes in survey sampling with (conditional) Poisson designs. Scand. J. Stat. 44 97-111. · Zbl 1361.62015
[7] Bickel, P.J. and Freedman, D.A. (1981). Some asymptotic theory for the bootstrap. Ann. Statist. 9 1196-1217. · Zbl 0449.62034 · doi:10.1214/aos/1176345637
[8] Boistard, H., Lopuhaä, H.P. and Ruiz-Gazen, A. (2017). Functional central limit theorems for single-stage sampling designs. Ann. Statist. 45 1728-1758. · Zbl 1459.62013 · doi:10.1214/16-AOS1507
[9] Bondesson, L., Traat, I. and Lundqvist, A. (2006). Pareto sampling versus Sampford and conditional Poisson sampling. Scand. J. Stat. 33 699-720. · Zbl 1164.62302 · doi:10.1111/j.1467-9469.2006.00497.x
[10] Booth, J.G., Butler, R.W. and Hall, P. (1994). Bootstrap methods for finite populations. J. Amer. Statist. Assoc. 89 1282-1289. · Zbl 0812.62006 · doi:10.1080/01621459.1994.10476868
[11] Brewer, K.R.W. and Donadio, M.E. (2003). The high entropy variance of the Horvitz-Thompson estimator. Surv. Methodol. 29 189-196.
[12] Cassel, C.-M., Särndal, C.-E. and Wretman, J.H. (1977). Foundations of Inference in Survey Sampling. New York-London-Sydney: Wiley Interscience. · Zbl 0391.62007
[13] Chao, M.T. and Lo, S.-H. (1985). A bootstrap method for finite population. Sankhya, Ser. A 47 399-405. · Zbl 0587.62031
[14] Chatterjee, A. (2011). Asymptotic properties of sample quantiles from a finite population. Ann. Inst. Statist. Math. 63 157-179. · Zbl 1432.62022 · doi:10.1007/s10463-008-0210-4
[15] Chauvet, G. (2007). Méthodes de bootstrap en population finie. Ph.D. Dissertation, Laboratoire de statistique d’enquêtes, CREST-ENSAI, Universioté de Rennes 2.
[16] Chen, X.-H., Dempster, A.P. and Liu, J.S. (1994). Weighted finite population sampling to maximize entropy. Biometrika 81 457-469. · Zbl 0816.62008 · doi:10.1093/biomet/81.3.457
[17] Conti, P.L. (2014). On the estimation of the distribution function of a finite population under high entropy sampling designs, with applications. Sankhya B 76 234-259. · Zbl 1330.62061 · doi:10.1007/s13571-014-0083-x
[18] Conti, P.L. and Marella, D. (2015). Inference for quantiles of a finite population: Asymptotic versus resampling results. Scand. J. Stat. 42 545-561. · Zbl 1368.62019 · doi:10.1111/sjos.12122
[19] Conti, P.L., Marella, D., Mecatti, F. and Andreis, F. (2020). Supplement to “A unified principled framework for resampling based on pseudo-populations: Asymptotic theory.” https://doi.org/10.3150/19-BEJ1138SUPP. · Zbl 1466.62241
[20] Conti, P.L., Marella, D. and Scanu, M. (2016). Statistical matching analysis for complex survey data with applications. J. Amer. Statist. Assoc. 111 1715-1725.
[21] Csörgő, S. and Rosalsky, A. (2003). A survey of limit laws for bootstrapped sums. Int. J. Math. Math. Sci. 45 2835-2861. · Zbl 1036.60018 · doi:10.1155/S0161171203301437
[22] Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist. 7 1-26. · Zbl 0406.62024 · doi:10.1214/aos/1176344552
[23] Efron, B. (2003). Second thoughts on the bootstrap. Statist. Sci. 18 135-140. · Zbl 1331.62180 · doi:10.1214/ss/1063994968
[24] Grafström, A. (2010). Entropy of unequal probability sampling designs. Stat. Methodol. 7 84-97. · Zbl 1230.62004
[25] Gross, S.T. (1980). Median estimation in sample surveys. In Proceedings of the Section on Survey Reasearch Methods. American Statistical Association 181-184.
[26] Hájek, J. (1964). Asymptotic theory of rejective sampling with varying probabilities from a finite population. Ann. Math. Stat. 35 1491-1523. · Zbl 0138.13303
[27] Hájek, J. (1981). Sampling from a Finite Population. Statistics: Textbooks and Monographs 37. New York: Dekker. · Zbl 0494.62008
[28] Holmberg, A. (1998). A bootstrap approach to probability proportional-to-size sampling. In Proceedings of the ASA Section on Survey Research Methods 378-383.
[29] Isaki, C.T. and Fuller, W.A. (1982). Survey design under the regression superpopulation model. J. Amer. Statist. Assoc. 77 89-96. · Zbl 0511.62016 · doi:10.1080/01621459.1982.10477770
[30] Lahiri, P. (2003). On the impact of bootstrap in survey sampling and small-area estimation. Statist. Sci. 18 199-210. · Zbl 1331.62076 · doi:10.1214/ss/1063994975
[31] Lahiri, S.N. (2003). Resampling Methods for Dependent Data. Springer Series in Statistics. New York: Springer. · Zbl 1028.62002
[32] Lundqvist, A. (2007). On the distance between some \(\pi\) ps sampling designs. Acta Appl. Math. 97 79-97. · Zbl 1116.62009 · doi:10.1007/s10440-007-9134-x
[33] Marella, V. and Vicard, P. (2017). Structural learning for complex survey data. Cladag 2017. 11th Scientific Meeting of the Classificaton and Data Analysis Group. Book of Short Papers. (ISBN 978-88-9945971-0). · Zbl 1466.62428 · doi:10.1080/03610926.2011.630769
[34] Mashreghi, Z., Haziza, D. and Léger, C. (2016). A survey of bootstrap methods in finite population sampling. Stat. Surv. 10 1-52. · Zbl 1351.62025 · doi:10.1214/16-SS113
[35] McCarthy, P.J. and Snowden, C.B. (1985). The bootstrap and finite population sampling. In Vital and Health Statistics 95(2) 1-23. Washington, DC: Public Heath Service Publication, U.S. Government Printing.
[36] Pfeffermann, D. (1993). The role of sampling weights when modeling survey data. Int. Stat. Rev. 61 317-337. · Zbl 0779.62009 · doi:10.2307/1403631
[37] Ranalli, M.G. and Mecatti, F. (2012). Comparing recent approaches for bootstrapping sample survey data: A first step towards a unified approach. In Proceedings of the ASA Section on Survey Research Methods 4088-4099.
[38] Rao, J.N.K. and Wu, C.-F.J. (1988). Resampling inference with complex survey data. J. Amer. Statist. Assoc. 83 231-241. · Zbl 0654.62015 · doi:10.1080/01621459.1988.10478591
[39] Sitter, R.R. (1992). A resampling procedure for complex survey data. J. Amer. Statist. Assoc. 87 755-765. · Zbl 0760.62013 · doi:10.1080/01621459.1992.10475277
[40] Sverchkov, M. and Pfeffermann, D. (2004). Prediction of finite population totals based on the sample distribution. Surv. Methodol. 30 79-92.
[41] Tillé, Y. (2006). Sampling Algorithms. Springer Series in Statistics. New York: Springer. · Zbl 1099.62009
[42] van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge: Cambridge Univ. Press. · Zbl 0910.62001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.