×

Depth-based nonparametric description of functional data, with emphasis on use of spatial depth. (English) Zbl 1466.62192

Summary: Statistical depth and related quantile functions, originally introduced for nonparametric description and analysis of multivariate data in a way sensitive to inherent geometry, are in active development for functional data and in this setting offer special options since the data may be visualized regardless of dimension. This paper provides depth-based methods for revealing the structure of a functional data set in terms of relevant sample quantile curves displayed at selected levels, and for constructing and displaying confidence bands for corresponding “population” versions. Also, the usual functional boxplot is enhanced, by adding inner fences to flag possible shape outliers, along with the outer fences that flag location outliers. This enables the boxplot to serve as a stand-alone tool for functional data, as with univariate and multivariate data. Further, the spatial depth approach, well-established for multivariate data, is investigated for nonparametric description of functional data along these lines. In comparison with four other commonly used depth approaches for functional data, over a range of actual and simulated data sets, the spatial depth approach is seen to offer a very competitive combination of robustness, efficiency, computational ease, simplicity, and versatility.

MSC:

62-08 Computational methods for problems pertaining to statistics
62R10 Functional data analysis

Software:

MNM; Rainbow
Full Text: DOI

References:

[1] Arribas-Gil, A.; Romo, J., Shape outlier detection and visualization for functional data: the outliergram, Biostatistics, 15, 603-619, (2014)
[2] Cardot, H.; Cenac, P.; Zitt, P.-A., Efficient and fast estimation of the geometric Median in Hilbert spaces with an averaged stochastic gradient algorithm, Bernoulli, 19, 18-43, (2013) · Zbl 1259.62068
[3] Cardot, H.; Goga, C.; Lardin, P., Uniform convergence and asymptotic confidence bands for model-assisted estimators of the mean of sampled functional data, Electron. J. Stat., 7, 562-596, (2013) · Zbl 1336.62043
[4] Cardot, H.; Josserand, E., Horvitz-Thompson estimators for functional data: asymptotic confidence bands and optimal allocation for stratified sampling, Biometrika, 98, 107-118, (2011) · Zbl 1214.62009
[5] Chaouch, M.; Goga, C., Using complex surveys to estimate the L1-Median of a functional variable: application to electricity load curves, Internat. Statist. Rev., 80, 40-59, (2012) · Zbl 1422.62365
[6] Chaudhuri, P., On a geometric notion of quantiles for multivariate data, J. Amer. Statist. Assoc., 91, 862-872, (1996) · Zbl 0869.62040
[7] Claeskens, G.; Hubert, M.; Slaets, L.; Vakili, K., Multivariate functional halfspace depth, J. Amer. Statist. Assoc., 109, 411-423, (2014) · Zbl 1367.62162
[8] Cuesta-Albertos, J. A.; Nieto-Reyes, A., The random tukey depth, Comput. Statist. Data Anal., 52, 4979-4988, (2008) · Zbl 1452.62344
[9] Cuevas, A.; Febrero, M.; Fraiman, R., Robust estimation and classification for functional data via projection-based depth functions, Comput. Statist., 22, 481-496, (2007) · Zbl 1195.62032
[10] Febrero, M.; Galeano, P.; Gonzalez-Manteiga, W., Outlier detection on functional data by depth measures, with application to identify abnormal \(\operatorname{NO}_x\) levels, Environmetrics, 19, 331-345, (2008)
[11] Ferguson, T. S., Mathematical statistics: A decision theoretic approach, (1967), Academic Press New York · Zbl 0153.47602
[12] Fraiman, R.; Muniz, G., Trimmed means for functional data, TEST, 10, 419-440, (2001) · Zbl 1016.62026
[13] Fraiman, R.; Zvarc, M., Resistant estimates for high dimensional and functional data based on random projections, Comput. Statist. Data Anal., 58, 326-338, (2013) · Zbl 1365.62200
[14] Gervini, D., Robust functional estimation using the Median and spherical principal components, Biometrika, 95, 587-600, (2008) · Zbl 1437.62469
[15] Hyndman, R. J.; Shang, H. L., Rainbow plots, bagplots, and boxplots for functional data (2010), J. Comput. Graph. Statist., 19, 29-45, (2010)
[16] López-Pintado, S.; Romo, J., On the concept of depth for functional data (2009), J. Amer. Statist. Assoc., 104, 718-734, (2009) · Zbl 1388.62139
[17] Nieto-Reyes, A., Battey, H., 2015. A topologically valid definition of depth for functional data. Preprint.
[18] Oja, H., Multivariate nonparametric methods with R: an approach based on spatial signs and ranks, (2010), Springer · Zbl 1269.62036
[19] Rousseeuw, P.; Leroy, A., Robust regression and outlier detection, (1987), Wiley · Zbl 0711.62030
[20] Rousseeuw, P.; Ruts, I.; Tukey, J. W., The bagplot: a bivariate boxplot, Amer. Statist., 53, 382-387, (1999)
[21] Scott, D. W., Multivariate density estimation: theory, practice, and visualization, (1992), John Wiley & Sons New York · Zbl 0850.62006
[22] Serfling, R., Approximation theorems of mathematical statistics, (1980), Wiley · Zbl 0538.62002
[23] Serfling, R., Nonparametric multivariate descriptive measures based on spatial quantiles, J. Statist. Plann. Inference, 123, 259-278, (2004) · Zbl 1045.62048
[24] Serfling, R., Equivariance and invariance properties of multivariate quantile and related functions, and the role of standardization, J. Nonparametr. Stat., 22, 915-936, (2010) · Zbl 1203.62103
[25] Sguera, C.; Galeano, P.; Lillo, R., Spatial depth-based classification for functional data, TEST, 23, 725-750, (2014) · Zbl 1312.62083
[26] Sun, Y.; Genton, M. G., Functional boxplots, J. Comput. Graph. Statist., 20, 316-334, (2011)
[27] Wang, S.; Serfling, R., On masking and swamping robustness of leading nonparametric outlier identifiers for univariate data, J. Statist. Plann. Inference, 162, 62-74, (2015) · Zbl 1320.62112
[28] Zhu, H. T.; Fan, J. Q.; Kong, L. L., Spatially varying coefficient models with applications in neuroimaging data with jumping discontinuity, J. Amer. Statist. Assoc., 109, 977-990, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.