×

Pathwise differentiability of reflected diffusions in convex polyhedral domains. (English. French summary) Zbl 1466.60076

Summary: Reflected diffusions in convex polyhedral domains arise in a variety of applications, including interacting particle systems, queueing networks, biochemical reaction networks and mathematical finance. Under suitable conditions on the data, we establish pathwise differentiability of such a reflected diffusion with respect to its defining parameters – namely, its initial condition, drift and diffusion coefficients, and (oblique) directions of reflection along the boundary of the domain. We characterize the right-continuous regularization of a pathwise derivative of the reflected diffusion as the pathwise unique solution to a constrained linear stochastic differential equation with jumps whose drift and diffusion coefficients, domain and directions of reflection depend on the state of the reflected diffusion. Previous work in the multidimensional context has been largely restricted to the study of differentiability of stochastic flows for (normally) reflected Brownian motions. A key difficulty is to identify a suitable linearization of the dynamics of the local time process, especially in the presence of a non-smooth boundary. We take a new approach that uses properties of directional derivatives of the associated extended Skorokhod map, and their characterization in terms of the so-called derivative problem. The proof involves establishing certain path properties of the reflected diffusion at nonsmooth parts of the boundary of the polyhedral domain, which may be independent interest, and proving that pathwise derivatives of reflected diffusions can be characterized in terms of directional derivatives of the extended Skorokhod map. As a corollary, we obtain a probabilistic representation for derivatives of expectations of functionals of reflected diffusions, which is useful for sensitivity analysis of reflected diffusions.

MSC:

60G17 Sample path properties
90C31 Sensitivity, stability, parametric optimization
93B35 Sensitivity (robustness)
60H07 Stochastic calculus of variations and the Malliavin calculus
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
65C30 Numerical solutions to stochastic differential and integral equations

References:

[1] S. Andres. Pathwise differentiability for SDEs in a convex polyhedron with oblique reflection. Ann. Inst. Henri Poincaré Probab. Stat.45 (1) (2009) 104-116. · Zbl 1171.60013 · doi:10.1214/07-AIHP151
[2] S. Andres. Pathwise differentiability for SDEs in a smooth domain with reflection. Electron. J. Probab.16 (28) (2011) 845-879. · Zbl 1231.60050 · doi:10.1214/EJP.v16-872
[3] A. D. Banner, R. Fernholz and I. Karatzas. Atlas models of equity markets. Ann. Appl. Probab.15 (4) (2005) 2296-2330. · Zbl 1099.91056 · doi:10.1214/105051605000000449
[4] M. Bossy, M. Cissé and D. Talay. Stochastic representations of derivatives of solutions of one-dimensional parabolic variational inequalities with Neumann boundary conditions. Ann. Inst. Henri Poincaré Probab. Stat.47 (2) (2011) 395-424. · Zbl 1236.60051 · doi:10.1214/10-AIHP357
[5] A. Budhiraja and C. Lee. Long time asymptotics for constrained diffusions in polyhedral domains. Stochastic Process. Appl.117 (8) (2007) 1014-1036. · Zbl 1119.60066 · doi:10.1016/j.spa.2006.11.007
[6] K. Burdzy. Differentiability of stochastic flow of reflected Brownian motions. Electron. J. Probab.14 (75) (2009) 2182-2240. · Zbl 1195.60107 · doi:10.1214/EJP.v14-700
[7] K. Burdzy and D. Nualart. Brownian motion reflected on Brownian motion. Probab. Theory Related Fields122 (4) (2002) 471-493. · Zbl 0995.60078 · doi:10.1007/s004400100165
[8] H. Chen and A. Mandelbaum. Leontief systems, RBVs and RBMs. In Applied Stochastic Analysis (London, 1989) 1-43. M. H. A. Davis and R. J. Elliott (Eds). Gordon and Breach, New York, 1991. · Zbl 0729.90021
[9] H. Chen and X. Shen. Strong approximations for multiclass feedforward queueing networks. Ann. Probab.10 (3) (2000) 828-876. · Zbl 1083.60511 · doi:10.1214/aoap/1019487511
[10] C. Costantini, E. Gobet and N. El Karoui. Boundary sensitivities for diffusion processes in time dependent domains. Appl. Math. Optim.54 (2006) 159-187. · Zbl 1109.49043 · doi:10.1007/s00245-006-0863-4
[11] J. D. Deuschel and L. Zambotti. Bismut-Elworthy’s formula and random walk representation for SDEs with reflection. Stochastic Process. Appl.115 (6) (2005) 907-925. · Zbl 1071.60044 · doi:10.1016/j.spa.2005.01.002
[12] A. B. Dieker and X. Gao. Sensitivity analysis for diffusion processes constrained to an orthant. Ann. Appl. Probab.24 (5) (2014) 1918-1945. · Zbl 1307.60105 · doi:10.1214/13-AAP967
[13] P. Dupuis and H. Ishii. On Lipschitz continuity of the solution mapping to the Skorokhod problem with applications. Stoch. Stoch. Rep.35 (1991) 31-62. · Zbl 0721.60062 · doi:10.1080/17442509108833688
[14] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer, New York, 2003. · Zbl 1038.91045
[15] T. Ichiba, V. Papathanakos, A. Banner, I. Karatzas and R. Fernholz. Hybrid atlas models. Ann. Appl. Probab.21 (2) (2011) 609-644. · Zbl 1230.60046 · doi:10.1214/10-AAP706
[16] W. Kang and K. Ramanan. A Dirichlet process characterization of a class of reflected diffusions. Ann. Probab.38 (3) (2010) 1062-1105. · Zbl 1202.60059 · doi:10.1214/09-AOP487
[17] W. Kang and K. Ramanan. On the submartingale problem for reflected diffusions in domains with piecewise smooth boundaries. Ann. Probab.45 (2017) 404-468. · Zbl 1459.60162 · doi:10.1214/16-AOP1153
[18] W. Kang and R. J. Williams. An invariance principle for semimartingale reflecting Brownian motions in domains with piecewise smooth boundaries. Ann. Appl. Probab.17 (2) (2007) 741-779. · Zbl 1125.60030 · doi:10.1214/105051606000000899
[19] H. Kunita. Stochastic Flows and Stochastic Differential Equations. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, UK, 1997. · Zbl 0865.60043
[20] D. Lipshutz and K. Ramanan. A Monte Carlo method for estimating sensitivities of reflected diffusions in convex polyhedral domains. Stoch. Syst.9 (2019) 101-140. · Zbl 07213005
[21] D. Lipshutz and K. Ramanan. On directional derivatives of Skorokhod maps in convex polyhedral domains. Ann. Appl. Probab.28 (2) (2018) 688-750. · Zbl 1401.90232 · doi:10.1214/17-AAP1299
[22] P. Malliavin and A. Thalmaier. Stochastic Calculus of Variations in Mathematical Finance. Springer, Berlin, 2006. · Zbl 1124.91035
[23] A. Mandelbaum and W. A. Massey. Strong approximations for time-dependent queues. Math. Oper. Res.20 (1) (1995) 33-64. · Zbl 0834.60096 · doi:10.1287/moor.20.1.33
[24] A. Mandelbaum and G. Pats. State-dependent stochastic networks. Part I. Approximations and applications with continuous diffusion limits. Ann. Appl. Probab.8 (2) (1998) 569-646. · Zbl 0945.60025 · doi:10.1214/aoap/1028903539
[25] A. Mandelbaum and K. Ramanan. Directional derivatives of oblique reflection maps. Math. Oper. Res.35 (3) (2010) 527-558. · Zbl 1220.60054 · doi:10.1287/moor.1100.0453
[26] M. Metivier. Pathwise differentiability with respect to a parameter of solutions of stochastic differential equations. Sémin. Probab. Strasbg.16 (1982) 490-502. · Zbl 0482.60060
[27] W. P. Peterson. A heavy traffic limit theorem for networks of queues with multiple customer types. Math. Oper. Res.16 (1) (1991) 90-118. · Zbl 0727.60114 · doi:10.1287/moor.16.1.90
[28] A. Pilipenko. Differentiability of stochastic reflecting flow with respect to starting point. Commun. Stoch. Anal.7 (1) (2013) 17-37.
[29] K. Ramanan. Reflected diffusions defined via the extended Skorokhod map. Electron. J. Probab.11 (36) (2006) 934-992. · Zbl 1111.60043 · doi:10.1214/EJP.v11-360
[30] K. Ramanan and M. I. Reiman. Fluid and heavy traffic diffusion limits for a generalized processor sharing model. Ann. Appl. Probab.13 (1) (2003) 100-139. · Zbl 1016.60083 · doi:10.1214/aoap/1042765664
[31] K. Ramanan and M. I. Reiman. The heavy traffic limit of an unbalanced generalized processor sharing model. Ann. Appl. Probab.18 (1) (2008) 22-58. · Zbl 1144.60056 · doi:10.1214/07-AAP438
[32] M. I. Reiman. Open queueing networks in heavy traffic. Math. Oper. Res.9 (3) (1984) 441-458. · Zbl 0549.90043 · doi:10.1287/moor.9.3.441
[33] L. C. G. Rogers and D. Williams. Diffusions, Markov Processes and Martingales. Volume 2: Itô Calculus, 2nd edition. Cambridge University Press, Cambridge, UK, 2000. · Zbl 0977.60005
[34] D. W. Stroock and S. R. S. Varadhan. On the support of diffusion processes with applications to the strong maximum principle. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. Volume 3: Probability Theory 333-359. University of California Press, Berkeley, CA, 1972. · Zbl 0255.60056
[35] S. R. S. Varadhan and R. J. Williams. Brownian motion in a wedge with oblique reflection. Comm. Pure Appl. Math.38 (4) (1984) 405-443. · Zbl 0579.60082 · doi:10.1002/cpa.3160380405
[36] J. Warren. Dyson’s Brownian motions, intertwining and interlacing. Electron. J. Probab.12 (2007) 573-590. · Zbl 1127.60078 · doi:10.1214/EJP.v12-406
[37] W. Whitt. An introduction to stochastic-process limits and their application to queues. Internet supplement, 2002. Available at http://www.columbia.edu/ ww2040/supplement.html. · Zbl 0993.60001
[38] J. Yang and H. J. Kushner. A Monte Carlo method for sensitivity analysis and parametric optimization of nonlinear stochastic systems. SIAM J. Control Optim.29 (5) (1991) 1216-1249. · Zbl 0742.93084 · doi:10.1137/0329064
[39] L. Zambotti. Fluctuations for a \(\nabla\phi\) interface model with repulsion from a wall. Probab. Theory Related Fields129 (3) (2004) 315-339. · Zbl 1073.60099 · doi:10.1007/s00440-004-0335-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.