×

An analytical study in multi-physics and multi-criteria shape optimization. (English) Zbl 1466.49036

Summary: A simple multi-physical system for the potential flow of a fluid through a shroud, in which a mechanical component, like a turbine vane, is placed, is modeled mathematically. We then consider a multi-criteria shape optimization problem, where the shape of the component is allowed to vary under a certain set of second-order Hölder continuous differentiable transformations of a baseline shape with boundary of the same continuity class. As objective functions, we consider a simple loss model for the fluid dynamical efficiency and the probability of failure of the component due to repeated application of loads that stem from the fluid’s static pressure. For this multi-physical system, it is shown that, under certain conditions, the Pareto front is maximal in the sense that the Pareto front of the feasible set coincides with the Pareto front of its closure. We also show that the set of all optimal forms with respect to scalarization techniques deforms continuously (in the Hausdorff metric) with respect to preference parameters.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
74P10 Optimization of other properties in solid mechanics
90C29 Multi-objective and goal programming

References:

[1] Agmon, S.; Douglis, A.; Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Commun. Pure Appl. Math., 12, 623-727 (1959) · Zbl 0093.10401 · doi:10.1002/cpa.3160120405
[2] Agmon, S.; Douglis, A.; Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Commun. Pure Appl. Math., 17, 35-92 (1964) · Zbl 0123.28706 · doi:10.1002/cpa.3160170104
[3] Allaire, G., Shape Optimization by the Homogenization Method (2012), New York: Springer, New York · Zbl 0990.35001
[4] Babuška, I.; Sawlan, Z.; Scavino, M.; Szabó, B.; Tempone, R., Spatial Poisson processes for fatigue crack initiation, Comput. Methods Appl. Mech. Eng., 345, 454-475 (2019) · Zbl 1440.74353 · doi:10.1016/j.cma.2018.11.007
[5] Bäker, M., Harders, H., Rösler, J.: Mechanical Behaviour of Engineering Materials: Metals, Ceramics, Polymers, and Composites. Springer, Berlin (2007)
[6] Baley Price, G., On the completeness of a certain metric space with an application to blaschke’s selection theorem, Bull. Amer. Math. Soc., 46, 278-280 (1940) · Zbl 0024.32305 · doi:10.1090/S0002-9904-1940-07195-2
[7] Bank, B.; Guddat, J.; Klatte, D.; Kummer, B.; Tammer, K., Non-Linear Parametric Optimization (1983), Wiesbaden: Springer Fachmedien Wiesbaden, Wiesbaden · Zbl 0502.49002
[8] Bendsoe, MP; Sigmund, O., Topology Optimization-Theory (2003), New York: Methods and Applications. Springer, New York · Zbl 1059.74001
[9] Bittner, L.; Gottschalk, H., Optimal reliability for components under thermomechanical cyclic loading, Control Cybern., 52, 421-425 (2016) · Zbl 1371.49039
[10] Bittner, L.: On shape calculus with elliptic PDE constraints in classical function spaces. Ph.D. thesis, University of Wuppertal (2019)
[11] Bolten, M., Doganay, O.T., Gottschalk, H., Klamroth, K.: Tracing locally pareto optimal points by numerical integration Preprint BUW-IMACM 20/10 (2020)
[12] Bolten, M., Hahn, C., Gottschalk, H., Saadi, M.: Numerical shape optimization to decrease the failure probability of ceramic structures. Preprint BUW-IMACM 17/05 (2017)
[13] Bolten, M., Gottschalk, H., Schmitz, S.: Minimal failure probability for ceramic design via shape control.J. Optim. Theory Appl. 166, 983-1001 (2015) · Zbl 1322.49070
[14] Böswirth, L., Bschorer, S.: Technische Strömungslehre. Springer Vieweg, New York (2014)
[15] Braess, D., Finite Elements (1997), Cambridge: Cambridge University Press, Cambridge · Zbl 0894.65054 · doi:10.1007/978-3-662-07233-2
[16] Bucur, D.; Buttazzo, G., Variational Methods in Shape Optimization Problems (2005), Boston: Birkhäuser, Boston · Zbl 1117.49001 · doi:10.1007/b137163
[17] Chenais, D., On the existence of a solution in a domain identification problem, J. Math. Anal. Appl., 52, 2, 189-219 (1975) · Zbl 0317.49005 · doi:10.1016/0022-247X(75)90091-8
[18] Chirkov, DV; Ankudinova, AS; Kryukov, AE; Cherny, SG; Skorospelov, VA, Multi-objective shape optimization of a hydraulic turbine runner using efficiency, strength and weight criteria, Struct. Multidiscip. Optim., 58, 627-640 (2018) · doi:10.1007/s00158-018-1914-6
[19] Cottrell, JA; Hughes, TJR; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), New York: Wiley, New York · Zbl 1378.65009 · doi:10.1002/9780470749081
[20] Delfour, MC; Zolésio, JP, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization (2011), Philadelphia: Siam, Philadelphia · Zbl 1251.49001 · doi:10.1137/1.9780898719826
[21] Doganay, OT; Gottschalk, H.; Hahn, C.; Klamroth, K.; Schultes, J.; Stiglmayr, M., Gradient based biobjective shape optimization to improve reliability and cost of ceramic components, Optim. Eng, 21, 1573-2924 (2019) · Zbl 1452.74095
[22] Ehrgott, M., Multicriteria Optimization (2005), New York: Springer, New York · Zbl 1132.90001
[23] Ern, A.; Guermond, JL, Therory and Practice of Finite Elements (2004), New York: Springer, New York · Zbl 1059.65103 · doi:10.1007/978-1-4757-4355-5
[24] Eschenauer, HA; Kobelev, VV; Schumacher, A., Bubble method for topology and shape optimization of structures, Struct. Optim., 8, 1, 42-51 (1994) · doi:10.1007/BF01742933
[25] Fedelich, B., A stochastic theory for the problem of multiple surface crack coalescence, Int. J. Fract., 91, 23-45 (1998) · doi:10.1023/A:1007431802050
[26] Fujii, N., Lower semicontinuity in domain optimization problems, J. Optim. Theory Appl., 59, 407-422 (1988) · Zbl 0629.49006 · doi:10.1007/BF00940307
[27] Fußeder, D.K.: Isogeometric finite element methods for shape optimization, dissertation, universität kaiserslautern (2015) · Zbl 1355.49001
[28] Gilbarg, D.; Trudinger, NS, Elliptic Partial Differential Equations of Second Order (2001), Berlin: Springer, Berlin · Zbl 1042.35002 · doi:10.1007/978-3-642-61798-0
[29] Gottschalk, H., Saadi, M., Doganay, O.T., Klamroth, K., Schmitz, S.: Adjoint method to calculate the shape gradients of failure probabilities for turbomachinery components. In: ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers Digital Collection (2018)
[30] Gottschalk, H.; Saadi, M., Shape gradients for the failure probability of a mechanic component under cyclic loading: a discrete adjoint approach, Comput. Mech., 64, 4, 895-915 (2019) · Zbl 1466.74040 · doi:10.1007/s00466-019-01686-3
[31] Gottschalk, H.; Schmitz, S., Optimal reliability in design for fatigue life, SIAM J. Control. Optim., 52, 5, 2727-2752 (2014) · Zbl 1307.49041 · doi:10.1137/120897092
[32] Gottschalk, H.; Schmitz, S.; Seibel, T.; Rollmann, G.; Krause, R.; Beck, T., Probabilistic schmid factors and scatter of LCF life, Mater. Sci. Eng., 46, 2, 156-164 (2015)
[33] Guddat, J.; Guerra Vazquez, F.; Jongen, HT, Paramteric Optimization: Singularities (1989), Wiesbaden: Pathfollowing and Jumps. Springer Fachmedien Wiesbaden, Wiesbaden
[34] Haslinger, J.; Mäkinen, RAE, Introduction to Shape Optimization: Theory, Approximation, and Computation (2003), Philadelphia: Society for Industrial and Applied Mathematics, Philadelphia · Zbl 1020.74001 · doi:10.1137/1.9780898718690
[35] Hertel, O.; Vormwald, M., Statistical and geometrical size effects in notched members based on weakest-link and short-crack modelling, Eng. Fract. Mech., 95, 72-83 (2012) · doi:10.1016/j.engfracmech.2011.10.017
[36] Hetnarski, RB; Eslami, MR, Thermal Stresses-Advanced Theory and Applications (2009), Berlin: Springer, Berlin · Zbl 1165.74004
[37] Liefke, A., Jaksch, P., Schmitz, S., Marciniak, V., Janoske, U., Gottschalk, H.: Probabilistic lcf risk evaluation of a turbine vane by combined size effect and notch support modeling. In: Proceedings of ASME Turbo Expo (2017)
[38] Mäde, L., Gottschalk, H., Schmitz, S., Beck, T., Rollmann, G.: Probabilistic lcf risk evaluation of a turbine vane by combined size effect and notch support modeling. In: ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers Digital Collection (2017)
[39] Mäde, L., Gottschalk, H., Schmitz, S., Beck, T., Rollmann, G.: Probabilistic LCF risk evaluation of a turbine vane by combined size effect and notch support modeling. In: Proceedings of ASME Turbo Expo (2017)
[40] Mäde, L.; Schmitz, S.; Gottschalk, H.; Beck, T., Combined notch and size effect modeling in a local probabilistic approach for LCF, Comput. Mater. Sci., 142, 377-388 (2018) · doi:10.1016/j.commatsci.2017.10.022
[41] Marler, RT; Arora, JS, Survey of multi-objective optimization methods for engineering, Struct. Multidiscip. Optim., 26, 6, 369-395 (2004) · Zbl 1243.90199 · doi:10.1007/s00158-003-0368-6
[42] Nardi, G., Schauder estimate for solutions of poisson’s equation with neumann boundary condition, L’Enseignement Mathématique, 60, 2, 423-437 (2015)
[43] Nitsche, JA, On Korn’s second inequality, RAIRO Model. Math. Anal. Numer., 15, 3, 237-248 (1981) · Zbl 0467.35019 · doi:10.1051/m2an/1981150302371
[44] Rao, S.S.: Engineering Optimization: Theory and Practice. Wiley, New York (2019)
[45] Schlichting, L.; Gersten, K., Boundary-Layer Theory (2017), Berlin: Springer, Berlin · Zbl 1358.76001 · doi:10.1007/978-3-662-52919-5
[46] Schmitz, S., Gottschalk, H., Rollmann, G., Krause, R.: Risk estimation for lcf crack initiation. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers Digital Collection (2013)
[47] Schmitz, S., Seibel, T., Beck, T., Rollmann, G., Krause, K., Gottschalk, H.: A probabilistic model for LCF. Comput. Mater. Sci. 79, 584-590 (2013)
[48] Schmitz, S.: A local and probabilistic model for low-cycle fatigue—new aspects of structural mechanics. Ph.D. thesis, Lugano and Wuppertal (2014)
[49] Schultes, J., Stiglmayr, M., Klamroth, K., Hahn, C.: Hypervolume scalarization for shape optimization to improve reliability and cost of ceramic components Optim. Eng. (2021). doi:10.1007/s11081-020-09586-9 · Zbl 1452.74095
[50] Sokołowski, J.; Zolésio, JP, Introduction to Shape Optimization—Shape Sensitivity Analysis (1992), Berlin: Springer, Berlin · Zbl 0761.73003 · doi:10.1007/978-3-642-58106-9
[51] Sterna-Karwat, A., Lipschitz and differentiable dependence of solutions on a parameter in a scalarization method, J. Aust. Math. Soc., 42, 3, 353-364 (1985) · Zbl 0616.49017 · doi:10.1017/S1446788700028639
[52] Sterna-Karwat, A., Continuous dependence of solutions on a parameter in a scalarization method, J. Optim. Theory Appl., 55, 3, 417-434 (1987) · Zbl 0616.90075 · doi:10.1007/BF00941178
[53] Sultanian, B., Gas Turbines: Internal Flow Systems Modeling (2018), Cambridge: Cambridge University Press, Cambridge · doi:10.1017/9781316755686
[54] Wall, WA; Frenzel, MA; Cyron, C., Isogeometric structural shape optimization, Comput. Methods Appl. Mech. Eng., 197, 33-40, 2976-2988 (2008) · Zbl 1194.74263 · doi:10.1016/j.cma.2008.01.025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.