×

A modified iterative algorithm for split feasibility problems of right Bregman strongly quasi-nonexpansive mappings in Banach spaces with applications. (English) Zbl 1466.47046

Summary: In this paper, we present a new iterative scheme for finding a common element of the solution set \(\mathcal F\) of the split feasibility problem and the fixed point set \(F(T)\) of a right Bregman strongly quasi-nonexpansive mapping \(T\) in \(p\)-uniformly convex Banach spaces which are also uniformly smooth. We prove strong convergence theorem of the sequences generated by our scheme under some appropriate conditions in real \(p\)-uniformly convex and uniformly smooth Banach spaces. Furthermore, we give some examples and applications to illustrate our main results in this paper. Our results extend and improve the recent ones of some others in the literature.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
90C25 Convex programming
90C48 Programming in abstract spaces

References:

[1] Censor, Y.; Elfving, T.; A multiprojection algorithm using Bregman projections in a product space; Numer. Algorithms: 1994; Volume 8 ,221-239. · Zbl 0828.65065
[2] Byrne, C.; Iterative oblique projection onto convex sets and the split feasibility problem; Inverse Probl.: 2002; Volume 18 ,441-453. · Zbl 0996.65048
[3] Kumam, W.; Witthayarat, U.; Wattanawitoon, K.; Suantai, S.; Kumam, P.; Convergence theorem for equilibrium problem and bregman strongly nonexpansive mappings in Banach spaces; Optim. J. Math. Progr. Oper. Res.: 2016; Volume 65 ,265-280. · Zbl 1338.47101
[4] Witthayarat, U.; Wattanawitoon, K.; Kumam, P.; Iterative scheme for system of equilibrium problems and Bregman asymptotically quasi-nonexpansive mappings in Banach spaces; J. Inf. Optim. Sci.: 2016; Volume 37 ,321-342. · Zbl 1338.47101
[5] Kumam, W.; Sunthrayuth, P.; Phunchongharn, P.; Akkarajitsakul, K.; Sa Ngiamsunthorn, P.; Kumam, P.; A new multi-step iterative algorithm for approximating common fixed points of a finite family of multi-valued bregman relatively nonexpansive mappings; Algorithms: 2016; Volume 9 . · Zbl 1466.47043
[6] Shehu, Y.; Mewomo, O.T.; Ogbuisi, F.U.; Further investigation into approximation of a common solution of fixed point problems and split feasibility problems; Acta Math. Sci.: 2016; Volume 36 ,913-930. · Zbl 1363.47118
[7] Schöpfer, F.; Iterative Regularization Method for the Solution of the Split Feasibility Problem in Banach Spaces; Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften: Saarbrücken, Germany 2007; .
[8] Schopfer, F.; Schuster, T.; Louis, A.K.; An iterative regularization method for the solution of the split feasibility problem in Banach spaces; Inverse Probl.: 2008; Volume 24 ,5. · Zbl 1153.46308
[9] Wang, F.; A new algorithm for solving the multiple-sets split feasibility problem in Banach spaces; Numer. Funct. Anal. Optim.: 2014; Volume 35 ,99-110. · Zbl 1480.47102
[10] Zegeye, H.; Shahzad, N.; Convergence theorems for right bregman strongly nonexpansive mappings in reflexive banach spaces; Abstr. Appl. Anal.: 2014; Volume 2014 ,584395. · Zbl 1473.47048
[11] Takahashi, W.; ; Nonlinear Functional Analysis-Fixed Point Theory and Applications: Yokohama, Japan 2000; . · Zbl 0997.47002
[12] Dunford, N.; Schwartz, J.T.; ; Linear Operators I: New York, NY, USA 1958; . · Zbl 0084.10402
[13] Bregman, L.M.; The relaxation method for finding common fixed points of convex sets and its application to the solution of problems in convex programming; USSR Comput. Math. Math. Phys.: 1976; Volume 7 ,200-217.
[14] Goebel, K.; Reich, S.; ; Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings: New York, NY, USA 1984; . · Zbl 0537.46001
[15] Censor, Y.; Lent, A.; An iterative row-action method for interval convex programming; J. Optim. Theory Appl.: 1981; Volume 34 ,321-353. · Zbl 0431.49042
[16] Alber, Y.I.; Metric and generalized projection operator in Banach spaces: Properties and applications; Theory and Applications of Nonlinear Operators of Accretive and Monotone Type: New York, NY, USA 1996; Volume Volume 178 ,15-50. · Zbl 0883.47083
[17] Phelps, R.P.; ; Convex Functions, Monotone Operators, and Differentiability: Berlin, Germany 1993; Volume Volume 1364 . · Zbl 0658.46035
[18] Kohsaka, F.; Takahashi, W.; Proximal point algorithms with Bregman functions in Banach spaces; J. Nonlinear Convex Anal.: 2005; Volume 6 ,505-523. · Zbl 1105.47059
[19] Shehu, Y.; Ogbuisi, F.U.; Iyiola, O.S.; Convergence analysis of an iterative algorithm for fixed point problems and split feasibility problems in certain Banach spaces; J. Math. Program. Oper. Res.: 2016; Volume 65 . · Zbl 1347.49014
[20] Shehu, Y.; Iyiola, O.S.; Enyi, C.D.; An iterative algorithm for split feasibility problems and fixed point problems in Banach spaces; Numer. Algorithms: 2016; Volume 72 ,835-864. · Zbl 1346.49051
[21] Reich, S.; A weak convergence theorem for the alternating method with Bregman distances; Theory and Applications of Nonlinear Operators: New York, NY, USA 1996; ,313-318. · Zbl 0943.47040
[22] Reich, S.; Sabach, S.; Two strong convergence theorems for a proximal method in reflexive Banach spaces; Numer. Funct. Anal. Optim.: 2010; Volume 31 ,22-44. · Zbl 1200.47085
[23] Martin-Marquez, V.; Reich, S.; Sabach, S.; Right Bregman nonexpansive operators in Banach spaces; Nonlinear Anal.: 2012; Volume 75 ,5448-5465. · Zbl 1408.47011
[24] Martin-Marquez, V.; Reich, S.; Sabach, S.; Existence and approximation of fixed points of right Bregman nonexpansive operators; Computational and Analytical Mathematics: New York, NY, USA 2013; ,501-520. · Zbl 1294.47073
[25] Mainge, P.E.; Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization; Set-Valued Anal.: 2008; Volume 16 ,899-912. · Zbl 1156.90426
[26] Xu, H.K.; Iterative algorithms for nonlinear operators; J. Lond. Math. Soc.: 2002; Volume 66 ,240-256. · Zbl 1013.47032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.