×

Usage modified of homotopy perturbation and Adomian decomposition techniques for solving Fredholm integral equations. (English) Zbl 1465.65166

Summary: In this paper, we present a modification to the homotopy perturbation method and the Adomain decomposition method for solving Fredholm integral equations. The results reveal that the proposed methods are very effective and simple and give the exact solution.

MSC:

65R20 Numerical methods for integral equations
45B05 Fredholm integral equations

References:

[1] S. Abbasbandy, Iterated He’s homotopy perturbation method for quadratic Riccati differential equation, Appl. Math. Comput. 175 (1) (2006) 581-589. · Zbl 1089.65072
[2] G. Adomian, A review of the decomposition in applied Mathematics, J. Math.Anal. Appl. 135 (1988) 501-544. · Zbl 0671.34053
[3] G. Adomian, Solving frontier problems of Physics: The decomposition method, Kluwer Academic Publishers, Boston, 1994. · Zbl 0802.65122
[4] P. Ariel, T. Hayat, S. Asghar, Homotopy perturbation method and axisymmetric flow over a stretching sheet, Int. J. Nonlinear Sci. Numer. Simul. 7 (4) (2006) 399-406.
[5] D.D. Ganji, M. Nourollahi, M. Rostamin, A comparison of variational iteration method and Adomian decomposi-tion method in some highly nonlinear equations, International Journal of Science and Technology, 2 (2), (2007), 179-188.
[6] A. Hamoud, K. Ghadle, The reliable modified of Laplace Adomian decomposition method to solve nonlinear interval Volterra-Fredholm integral equations, Korean J. Math., 25 (3) (2017), 323-334. · Zbl 1488.65744
[7] A. Hamoud, K. Ghadle, On the numerical solution of nonlinear Volterra-Fredholm integral equations by varia-tional iteration method, Int. J. Adv. Sci. Tech. Research, 3 (2016), 45-51.
[8] A. Hamoud, K. Ghadle, The combined modified Laplace with Adomian decomposition method for solving the nonlinear Volterra-Fredholm integro-differential equations, J. Korean Soc. Ind. Appl. Math., 21 (2017), 17-28. · Zbl 1383.65157
[9] A. Hamoud, K. Ghadle, Modified Adomian decomposition method for solving fuzzy Volterra-Fredholm integral equations, J. Indian Math. Soc. 85 (1-2) (2018), 52-69. · Zbl 1463.65421
[10] A. Hamoud, K. Ghadle, Recent advances on reliable methods for solving Volterra-Fredholm integral and integro-differential equations, Asian Journal of Mathematics and Computer Research, 24, No 3 (2018), 128-157.
[11] A. Hamoud, K. Ghadle, Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations, J. Math. Model., 6 (1) (2018), 91-104. · Zbl 1413.65482
[12] A. Hamoud, K. Ghadle, Usage of the homotopy analysis method for solving fractional Volterra-Fredholm integro-differential equation of the second kind, Tamkang Journal of Mathematics, 49 (4) (2018), 301-315. · Zbl 1415.65285
[13] A.A. Hamoud, K.P. Ghadle, The approximate solutions of fractional Volterra-Fredholm integro-differential equa-tions by using analytical techniques, Probl. Anal. Issues Anal., 7 (25) (1), (2018), 41-58. · Zbl 07139986
[14] A.A. Hamoud, M.SH. Bani Issa, K.P. Ghadle, Existence and uniqueness results for nonlinear Volterra-Fredholm integro-differential equations, Nonlinear Functional Analysis and Applications, 23 (4), (2018), 797-805. · Zbl 1423.45005
[15] A.A. Hamoud, K.P. Ghadle, Existence and uniqueness of solutions for fractional mixed Volterra-Fredholm integro-differential equations, Indian J. Math., 60 (3), (2018), 375-395. · Zbl 1415.45001
[16] A.A. Hamoud, K.P. Ghadle, M.SH. Bani Issa, Giniswamy, Existence and uniqueness theorems for fractional Volterra-Fredholm integro-differential equations, Int. J. Appl. Math., 31 (3), (2018), 333-348.
[17] A.A. Hamoud, K.P. Ghadle, Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations, J. Appl. Comput. Mech. 5 (1), (2019), 58-69.
[18] A.A. Hamoud, K.P. Ghadle, S.M. Atshan, The approximate solutions of fractional integro-differential equations by using modified Adomian decomposition method, Khayyam J. Math. 5 (1), (2019), 21-39. · Zbl 1412.49063
[19] A.A. Hamoud, K.P. Ghadle, Existence and uniqueness of the solution for Volterra-Fredholm integro-differential equations, Journal of Siberian Federal University. Mathematics & Physics, 11 (6), (2018), 692-701. · Zbl 1532.65123
[20] J.H. He, A variational approach to nonlinear problems and its application, Mech. Applic. 20 (1), (1998), 30-34.
[21] J.H. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Int. J. Non-Linear Mech. 35 (1) (2000) 37-43. · Zbl 1068.74618
[22] J.H. He, The homotopy perturbation method for non-linear oscillators with discontinuities, Appl. Math. Comput. 151 (1) (2004) 287-292. · Zbl 1039.65052
[23] J.H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos Solitons Fract. 26 (3) (2005) 695-700. · Zbl 1072.35502
[24] J.H. He, Asymptotology by homotopy perturbation method, Appl. Math. Comput. 156 (3) (2004) 591-596. · Zbl 1061.65040
[25] J.H. He, Homotopy perturbation method for solving boundary problems, Phys. Lett. A, 350 (1-2) (2006) 87-88. · Zbl 1195.65207
[26] S. Liao, The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems, Ph.D. Thesis, Shanghai Jiao Tong University, 1992.
[27] X. Lie-jun, A new modification of Adomian decomposition method for Volterra integral equations of the second kind, Journal of Applied Mathematics, 2013 (2013), 1-7. · Zbl 1397.65321
[28] H. Ali, F. Abdelwahid, Modified Adomian techniques applied to non-linear Volterra integral equations, Open Journal of Applied Sciences, 3 (2013), 202-207.
[29] J. Saberi-Nadjafi, M. Tamamgar, Modified homotopy perturbation method for solving integral equations, Inter-national Journal of Modern Physics B, 24 (24) (2010), 4741-4746. · Zbl 1219.65164
[30] J. Saberi-Nadjafi, M. Tamamgar, Modified homotopy perturbation method for solving the system of Volterra in-tegral equations, International Journal of Nonlinear Sciences and Numerical Simulation, 9 (4) (2008), 409-413.
[31] A.M. Wazwaz, Linear and Nonlinear Integral Equations Methods and Applications, Springer Heidelberg Dor-drecht London New York, 2011 · Zbl 1227.45002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.