×

Affine relation between an infinitely divisible distribution function and its Lévy measure. (English) Zbl 1465.60018

Summary: A certain subfamily of discrete compound Poisson laws is known to be characterised in terms of an affine relation linking the probability masses with those of its jump law. We show that the continuous version of this relation leads to the so-called Geeta laws and the Kendall-Ressel law (for the zero hitting time of a drifted gamma process). This yields an explicit expression for the Laplace transform of the Kendall-Ressel law in terms of the secondary branch of the Lambert function and it offers an alternative perspective on a recent treatment of the gamma process hitting time. The ambit of logarithmic complete monotonicity of a certain family of functions is extended.

MSC:

60E07 Infinitely divisible distributions; stable distributions
60G51 Processes with independent increments; Lévy processes

Software:

DLMF
Full Text: DOI

References:

[1] Berg, C., Integral representation of some functions related to the gamma function, Mediterr. J. Math., 1, 433-439 (2004) · Zbl 1162.33300
[2] Bertoin, J., Lévy Processes (1996), C.U.P.: C.U.P. Cambridge · Zbl 0861.60003
[3] Bondesson, L., Generalized Gamma Convolutions and Related Classes of Distributions and Densities (1992), Springer-Verlag: Springer-Verlag New York · Zbl 0756.60015
[4] Bondesson, L.; Steutel, F., A class of infinitely divisible distributions connected to branching processes and random walks, J. Math. Anal. Appl., 295, 134-143 (2004) · Zbl 1054.60018
[5] Borovkov, K.; Burq, Z., Kendall’s identity for the first crossing revisited, Electron. Commun. Probab., 6, 91-94 (2001) · Zbl 1008.60065
[6] Burridge, J.; Kuznetsov, A.; Kwaśnicki, M.; Kyprianou, A. E., New families of subordinators with explicit transition probability semigroup, Stoch. Process. Appl., 124, 3480-3495 (2014) · Zbl 1300.60068
[7] Chen, C-P.; Qi, F., Logarithmically completely monotonic functions relating to the gamma function, J. Math. Anal. Appl., 321, 405-411 (2006) · Zbl 1099.33002
[8] Consul, P.; Famoye, F., Lagrangian Probability Distributions (2006), Birkhäuser: Birkhäuser Boston · Zbl 1103.62013
[9] Corless, R. M.; Gonnet, G. H.; Hare, D.; Jeffrey, D. J.; Knuth, D. E., On the Lambert W function, Adv. Comput. Math., 5, 329-359 (1996) · Zbl 0863.65008
[10] (Erdélyi, A., Higher Transcendental Functions, Volume III (1955), McGraw-Hill: McGraw-Hill New York) · Zbl 0064.06302
[11] Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series and Products (1994), Academic Press: Academic Press Boston · Zbl 0918.65002
[12] Guo, S.; Qi, F.; Srivastava, H. M., Supplements to a class of logarithmically completely monotonic functions associated with the gamma function, Appl. Math. Comput., 197, 768-774 (2008) · Zbl 1139.33300
[13] Jedidi, W.; Simon, T., Further examples of GGC and HCM densities, Bernoulli, 19, 1818-1838 (2013) · Zbl 1303.60016
[14] Joe, H.; Seshadri, V., Infinitely divisible distributions arising from first crossing times and related results, Sankhya, 74-A, 222-248 (2012) · Zbl 1277.60034
[15] Johnson, N.; Kotz, S.; Kemp, A., Univariate Discrete Distributions (1992), Wiley: Wiley New York · Zbl 0773.62007
[16] Johnson, W. P., The curious history of Faà di Bruno’s formula, Am. Math. Mon., 109, 217-234 (2002) · Zbl 1024.01010
[17] Karp, D. P.; Prilepkina, E. G., Completely monotonic gamma ratio and infinitely divisible H-function of Fox, Comput. Methods Funct. Theory, 16, 135-153 (2016) · Zbl 1334.33008
[18] Kendall, D. G., Some problems in the theory of dams, J. R. Stat. Soc., Ser. B, 19, 207-212 (1957) · Zbl 0118.35502
[19] Letac, G.; Mora, M., Natural exponential families with cubic variance functions, Ann. Stat., 18, 1-37 (1990) · Zbl 0714.62010
[20] Malouche, D., Natural exponential families associated to Pick functions, Test, 7, 391-412 (1998) · Zbl 0935.60006
[21] Nakamura, Y., Classes of operator monotone functions and Stieltjes functions, Oper. Theory, Adv. Appl., 41, 395-404 (1989) · Zbl 0685.47015
[22] Olver, F.; Lozier, D.; Boisvert, R.; Clark, C., NIST Handbook of Mathematical Functions (2010), C.U.P.: C.U.P. Cambridge · Zbl 1198.00002
[23] Pakes, A. G., A hitting time for Lévy processes, with applications to dams and branching processes, Ann. Fac. Sci. Toulouse, V, 521-544 (1996) · Zbl 0879.60074
[24] Pakes, A. G., The Lambert W function, Nuttall’s integral, and the Lambert law, Stat. Probab. Lett., 139, 53-60 (2018) · Zbl 1391.60037
[25] Pakes, A. G., Self-decomposable laws from continuous branching processes, J. Theor. Probab., 33, 361-395 (2020) · Zbl 1461.60015
[26] Pakes, A. G.; Satheesh, S., A note on gaps in the support of discretely infinitely divisible laws, Prob. Stat., Article 695623 pp. (2013) · Zbl 1302.60036
[27] Prabhu, N., Stochastic Storage Processes (1998), Springer: Springer New York
[28] Qi, F.; Agarwal, R. P., On complete monotonicity for several classes of functions related to ratios of gamma functions, J. Inequal. Appl., 36, 2019, 36 (2019) · Zbl 1499.33013
[29] Riordan, J., Combinatorial Identities (1968), Wiley: Wiley New York · Zbl 0194.00502
[30] Saslaw, W., The Distribution of the Galaxies: Gravitational Clustering in Cosmology (2000), C.U.P.: C.U.P. Cambridge · Zbl 0954.83002
[31] Sato, K-I., Lévy Processes and Infinitely Divisible Distributions (1999), C.U.P.: C.U.P. Cambridge · Zbl 0973.60001
[32] Schilling, R. N.; Song, R.; Vondracek, Z., Bernstein Functions (2012), De Gruyter: De Gruyter Berlin · Zbl 1257.33001
[33] Shanbhag, D.; Pestana, D.; Sreehari, M., Some further results in infinite divisibility, Math. Proc. Camb. Philos. Soc., 82, 289-295 (1977) · Zbl 0366.60022
[34] Steutel, F. W.; van Harn, K., Infinite Divisibility of Probability Distributions on the Real Line (2004), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York · Zbl 1063.60001
[35] Vinogradov, V., On Kendall-Ressel and related distributions, Stat. Probab. Lett., 81, 1493-1501 (2011) · Zbl 1232.60016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.