×

Valuations: from orthogonal additivity to orthosymmetry. (English) Zbl 1465.46005

Authors’ abstract: We prove that polynomial valuations on vector lattices correspond to orthosymmetric multilinear maps. As a consequence we obtain a concise proof of the correspondence between orthosymmetry and orthogonal additivity.

MSC:

46A40 Ordered topological linear spaces, vector lattices
52B45 Dissections and valuations (Hilbert’s third problem, etc.)
Full Text: DOI

References:

[1] Abramovich, Y.; Sirotkin, G., On order convergence of nets, Positivity, 9, 3, 287-292 (2005) · Zbl 1110.46002
[2] Aliprantis, C. D.; Burkinshaw, O., Positive Operators, xx+376 (2006), Springer: Springer Dordrecht · Zbl 1098.47001
[3] Arens, R., Operations induced in function classes, Monatsh. Math., 55, 1-19 (1951) · Zbl 0042.35601
[4] Ben Amor, F., Orthogonally additive homogenous polynomials on vector lattices, Comm. Algebra, 43, 3, 1118-1134 (2015) · Zbl 1325.46004
[5] Bernau, S. J.; Huijsmans, C. B., The order bidual of almost \(f\)-algebras and \(d\)-algebras, Trans. Amer. Math. Soc., 347, 11, 4259-4275 (1995) · Zbl 0851.46003
[6] Boulabiar, K., On products in lattice-ordered algebras, J. Aust. Math. Soc., 75, 1, 23-40 (2003) · Zbl 1044.06010
[7] Boulabiar, K.; Buskes, G., Vector lattice powers: \(f\)-algebras and functional calculus, Comm. Algebra, 34, 4, 1435-1442 (2006) · Zbl 1100.46001
[8] Bu, Q.; Buskes, G., Polynomials on Banach lattices and positive tensor products, J. Math. Anal. Appl., 388, 2, 845-862 (2012) · Zbl 1245.46035
[9] Buskes, G.; Roberts, S., Arens extensions for polynomials and the Woodbury-Schep formula, (Positivity and Noncommutative Analysis (2019), Springer International Publishing), 37-48 · Zbl 1454.46040
[10] Buskes, G.; van Rooij, A., Bounded variation and tensor products of Banach lattices, Positivity, 7, 1-2, 47-59 (2003) · Zbl 1037.46062
[11] Ercan, Z.; Wickstead, A. W., Towards a theory of nonlinear orthomorphisms, (Functional Analysis and Economic Theory (1998), Springer: Springer Berlin), 65-78 · Zbl 0916.47041
[12] Fremlin, D. H., Abstract Köthe spaces. I, Proc. Camb. Phil. Soc., 63, 653-660, 681 (1967) · Zbl 0149.33501
[13] van Gaans, O., The Riesz Part of a Positive Bilinear Form, 19-30 (2001), Katholieke Universiteit Nijmegen: Katholieke Universiteit Nijmegen Circumspice. Nijmegen
[14] Ibort, A.; Linares, P.; Llavona, J. G., A representation theorem for orthogonally additive polynomials on Riesz spaces, Rev. Mat. Complut., 25, 1, 21-30 (2012) · Zbl 1297.46006
[15] Kusraeva, Z. A., On the representation of orthogonally additive polynomials, Sibirsk. Mat. Zh., 52, 2, 315-325 (2011) · Zbl 1226.46043
[16] Linares, P., Orthogonally Additive Polynomials and Applications (2009), Universidad Complutense de Madrid, (Ph.D. thesis)
[17] Loane, J., Polynomials on Riesz Spaces (2007), National University of Ireland, Galway, (Ph.D. thesis)
[18] Luxemburg, W. A.J.; Zaanen, A. C., Riesz Spaces, Vol. I, xi+514 (1971), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam-London · Zbl 0231.46014
[19] Mazur, S.; Orlicz, W., Grundlegende Eigenschaften der polynomischen Operationen, Studia Math., 5, 1, 50-68 (1934) · JFM 60.1074.03
[20] Sundaresan, K., Geometry of spaces of homogeneous polynomials on Banach lattices, (Applied Geometry and Discrete Mathematics. Applied Geometry and Discrete Mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4 (1991), Amer. Math. Soc., Prov.: Amer. Math. Soc., Prov. RI), 571-586 · Zbl 0745.46028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.