×

Equivariant dissipation in non-Archimedean groups. (English) Zbl 1465.37005

Summary: We prove that, if a topological group \(G\) has an open subgroup of infinite index, then every net of tight Borel probability measures on \(G\) UEB-converging to invariance dissipates in \(G\) in the sense of Gromov. In particular, this solves a 2006 problem by V. Pestov [Dynamics of infinite-dimensional groups. The Ramsey-Dvoretzky-Milman phenomenon. Providence, RI: American Mathematical Society (AMS) (2006; Zbl 1123.37003)]: for every left-invariant (or right-invariant) metric \(d\) on the infinite symmetric group \(\mathrm{Sym}(\mathbb{N})\), compatible with the topology of pointwise convergence, the sequence of the finite symmetric groups \((\mathrm{Sym} (n), d \upharpoonright_{\mathrm{Sym}(n)}, \mu_{\mathrm{Sym}(n)})_{n \in \mathbb{N}}\) equipped with the restricted metrics and their normalized counting measures dissipates, thus fails to admit a subsequence being Cauchy with respect to Gromov’s observable distance.

MSC:

37A15 General groups of measure-preserving transformations and dynamical systems
22F05 General theory of group and pseudogroup actions
32B05 Analytic algebras and generalizations, preparation theorems
28A33 Spaces of measures, convergence of measures

Citations:

Zbl 1123.37003

References:

[1] Arhangel’Skii, A.; Tkachenko, M., Topological Groups and Related Structures (2008), Paris: Atlantis Press, Paris · Zbl 1323.22001
[2] Bogachev, V. I., Measure Theory (2007), Berlin: Springer, Berlin · Zbl 1120.28001
[3] Bouziad, A.; Troallic, J-P, A precompactness test for topological groups in the manner of Grothendieck, Topology Proceedings, 31, 19-30 (2007) · Zbl 1141.43007
[4] Buldygin, V. V.; Kharazishvili, A. B., Geometric Aspects of Probability Theory and Mathematical Statistics (2000), Dordrecht: Kluwer Academic, Dordrecht · Zbl 0968.60002
[5] Burago, D.; Burago, Y.; Ivanov, S., A Course in Metric Geometry (2001), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0981.51016
[6] Giordano, T.; Pestov, V. G., Some extremely amenable groups related to operator algebras and ergodic theory, Journal of the Institute of Mathematics of Jussieu, 6, 279-315 (2007) · Zbl 1133.22001 · doi:10.1017/S1474748006000090
[7] Glasner, E.; Tsirelson, B.; Weiss, B., The automorphism group of the Gaussian measure cannot act pointwise, Israel Journal of Mathematics, 148, 305-329 (2005) · Zbl 1105.37006 · doi:10.1007/BF02775441
[8] Glasner, E.; Weiss, B., Minimal actions of the group S(Z) of permutations of the integers, Geometric and Functional Analysis, 12, 964-988 (2002) · Zbl 1025.37006 · doi:10.1007/PL00012651
[9] Gromov, M., Metric Structures for Riemannian and Non-Riemannian Spaces (1999), Boston, MA: Birkhäuser Boston, Boston, MA · Zbl 0953.53002
[10] Gromov, M.; Milman, V. D., A topological application of the isoperimetric inequality, American Journal of Mathematics, 105, 843-854 (1983) · Zbl 0522.53039 · doi:10.2307/2374298
[11] Holm, P., On the Bohr compactißcation, Mathematische Annalen, 156, 34-46 (1964) · Zbl 0121.03705 · doi:10.1007/BF01359979
[12] Kelley, J. L., General Topology (1975), New York: Springer, New York · Zbl 0306.54002
[13] Ledoux, M., The concentration of measure phenomenon (2001), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0995.60002
[14] Lévy, P., Leçons d’analyse fonctionnelle (1922), Paris: Gauthier-Villars, Paris · JFM 48.0453.01
[15] Maurey, B., Constructions de suites symétriques, Comptes Rendus de l’Academie des Sciences. Série A-B, 288, 679-681 (1979) · Zbl 0398.46019
[16] Milman, V. D., Infinite-dimensional geometry of the unit sphere in Banach space, Soviet Mathematics. Doklady, 8, 1440-1444 (1967) · Zbl 0175.13201
[17] Milman, V. D.; Schechtman, G., Asymptotic Theory of Finite Dimensional Normed Spaces (1986), Berlin-Heidelberg: Springer, Berlin-Heidelberg · Zbl 0911.52002
[18] Pachl, J., Uniform Spaces and Measures (2013), New York: Springer, New York · Zbl 1267.54001
[19] Parthasarathy, K. R., Probability Measures on Metric Spaces (1967), New York-London: Academic Press, New York-London · Zbl 0153.19101
[20] Pestov, V. G., Ramsey-Milman phenomenon, Urysohn metric spaces, and extremely amenable groups, Israel Journal of Mathematics, 127, 317-357 (2002) · Zbl 1007.43001 · doi:10.1007/BF02784537
[21] Pestov, V. G., Dynamics of Infinite-Dimensional Groups: The Ramsey-Dvoretzky-Milman Phenomenon (2006), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1123.37003
[22] Pestov, V. G., Concentration of measure and whirly actions of Polish groups, Probabilistic Approach to Geometry, 383-403 (2010), Tokyo: Mathematical Society of Japan, Tokyo · Zbl 1213.37011
[23] Pestov, V. G.; Schneider, F. M., On amenability and groups of measurable maps, Journal of Functional Analysis, 273, 3859-3874 (2017) · Zbl 1412.43002 · doi:10.1016/j.jfa.2017.09.011
[24] Schneider, F. M., Equivariant concentration in topological groups, Geometry & Topology, 23, 925-956 (2019) · Zbl 1426.37026 · doi:10.2140/gt.2019.23.925
[25] Schneider, F. M.; Thom, A., On Følner sets in topological groups, Compositio Mathematica, 154, 1333-1362 (2018) · Zbl 1400.54045 · doi:10.1112/S0010437X1800708X
[26] Shioya, T., Metric Measure Geometry (2016), Zürich: EMS Publishing House, Zürich · Zbl 1335.53003
[27] Solecki, S., Actions of non-compact and non-locally compact Polish groups, Journal of Symbolic Logic, 65, 1881-1894 (2000) · Zbl 0972.03043 · doi:10.2307/2695084
[28] Uspenskij, V. V., On subgroups of minimal topological groups, Topology and its Applications, 155, 1580-1606 (2008) · Zbl 1166.22002 · doi:10.1016/j.topol.2008.03.001
[29] De Vries, J., Elements of Topological Dynamics (1993), Dordrecht: Kluwer Academic, Dordrecht · Zbl 0783.54035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.