×

Initial-boundary value problem for a time-fractional subdiffusion equation with an arbitrary elliptic differential operator. (English) Zbl 1465.35387

Summary: An initial-boundary value problem for a time-fractional subdiffusion equation with an arbitrary order elliptic differential operator is considered. Uniqueness and existence of the classical solution of the posed problem are proved by the classical Fourier method. Sufficient conditions for the initial function and for the right-hand side of the equation are indicated, under which the corresponding Fourier series converge absolutely and uniformly. In the case of an initial-boundary value problem on \(N\)-dimensional torus, one can easily see that these conditions are not only sufficient, but also necessary.

MSC:

35R11 Fractional partial differential equations
35J40 Boundary value problems for higher-order elliptic equations

References:

[1] Machado, J. A. T., Handbook of Fractional Calculus with Applications (2019), Berlin: De Gruyter, Berlin
[2] C. Xu, Y. Yu, Y. Q. Chen, and Z. Lu, ‘‘Forecast analysis of the epidemic trend of COVID-19 in the United States by a generalized fractional-order SEIR model,’’ arXiV: 2004.12541v1 (2020).
[3] M. A. Khan and A. Atangana, ‘‘Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative,’’ Alexandria J. Eng. (2020, in press).
[4] Gorenflo, R.; Kilbas, A. A.; Mainardi, F.; Rogozin, S. V., Mittag-Leffler Functions, Related Topics and Applications (2014), Berlin: Springer, Berlin · Zbl 1309.33001 · doi:10.1007/978-3-662-43930-2
[5] Y. Zhang, D. A. Benson, M. M. Meerschaert, E. M. LaBolle, and H. P. Scheffler, ‘‘Random walk approximation of fractional-order multiscaling anomalus deffusion,’’ Phys. Rev. E 74, 026706 (2006).
[6] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[7] Umarov, S.; Hahn, M.; Kobayashi, K., Beyond the Triangle: Browian Motion, Ito Calculas and Fokker-Plank Equation-Fractional Generalizations (2017), Singapore: World Scientific, Singapore
[8] Hilfer, R., Applications of Fractional Calculus in Physics (2000), Singapore: World Scientific, Singapore · Zbl 0998.26002 · doi:10.1142/3779
[9] https://www.worldometers.info/coronavirus/.
[10] Umarov, S., Introduction to Fractional and Pseudo-Differential Equations with Singular Symbols (2015), Berlin: Springer, Berlin · Zbl 1331.35005 · doi:10.1007/978-3-319-20771-1
[11] Pskhu, A. V., Fractional Order Partial Differential Equations (2005), Moscow: Nauka, Moscow · Zbl 1193.35245
[12] Agrawal, O. P., Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlin. Dynam., 29, 145-155 (2002) · Zbl 1009.65085 · doi:10.1023/A:1016539022492
[13] Ashurov, R.; Cabada, A.; Turmetov, B., Operator method for construction of solutions of linear fractional differential equations with constant coefficients, Fract. Calcul. Appl. Anal., 1, 229-252 (2016) · Zbl 1339.34006
[14] Ahmed, H. M.; El-Owaidy, H. M.; Al-Nahhas, M. A., Nonlinear Hilfer fractional integro-partial differential system, Lobachevskii J. Math., 40, 115-126 (2019) · Zbl 1419.34203 · doi:10.1134/S1995080219020021
[15] Damag, F. H.; Kilisman, A.; Ibrahim, R. W., Mixed solutions of monotone iterative technique for hybrid fractional differential equations, Lobachevskii J. Math., 40, 156-165 (2019) · Zbl 1419.34168 · doi:10.1134/S1995080219020069
[16] Taieb, A., Stability of singular fractional systems of nonlinear integro-differential equations, Lobachevskii J. Math., 40, 219-229 (2019) · Zbl 1425.45004 · doi:10.1134/S1995080219020148
[17] Il’in, V. A., Uniqueness of generalized solutions of mixed problems for the wave equation with nonlocal boundary conditions, Differ. Equat., 44, 692-700 (2008) · Zbl 1194.35229 · doi:10.1134/S001226610805011X
[18] Il’in, V. A.; Moiseev, E. I., An upper bound taken on the diagonal for the spectral function of the multidimensional Schrödinger operator with a potential satisfying the Kato condition, Differ. Equat., 34, 358-368 (1998) · Zbl 0946.35054
[19] Kapustin, N. Yu.; Moiseev, E. I., A spectral problem for the Laplace operator in the square with a spectral parameter in the boundary condition, Differ. Equat., 34, 663-668 (1998) · Zbl 1003.35103
[20] Yuldashev, T. K., On a boundary-value problem for Boussinesq type nonlinear integro-differential equation with reflecting argument, Lobachevskii J. Math., 41, 111-123 (2020) · Zbl 1450.35263 · doi:10.1134/S1995080220010151
[21] Yuldashev, T. K., Nonlinear optimal control of thermal processes in a nonlinear Inverse problem, Lobachevskii J. Math., 41, 124-136 (2020) · Zbl 1450.35295 · doi:10.1134/S1995080220010163
[22] Pskhu, A. V., Initial-value problem for a linear ordinary differential equation of noninteger order, Sb.: Math., 202, 571-582 (2011) · Zbl 1226.34005
[23] Pskhu, A. V., Green function of the first boundary-value problem for the fractional diffusion-wave equation in a multidimensional rectangular domain, Mathematics, 8, 464 (2020) · doi:10.3390/math8040464
[24] M. Ruzhansky, N. Tokmagambetov, and B. T. Torebek, ‘‘On non-local problem for a multi-term fractional diffusion-wave equation,’’ arXiv:1812.01336v2 [math.AP] (2018). · Zbl 1446.35253
[25] Agmon, S., On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Commun. Pure Appl. Math., 15, 119-147 (1962) · Zbl 0109.32701 · doi:10.1002/cpa.3160150203
[26] Krasnoselski, M. A.; Zabreyko, P. P.; Pustilnik, E. I.; Sobolevski, P. S., Integral Operators in the Space of Integrable Functions (1966), Moscow: Nauka, Moscow · Zbl 0145.39703
[27] Alimov, Sh. A., Fractional power of elliptic operators and isomorfizm of classes of differentiable functions, Differ. Equat., 8, 1609-1626 (1972) · Zbl 0256.35070
[28] Alimov, Sh. A.; Ashurov, R. R.; Pulatov, A. K., Multiple Fourier Series and Fourier Integrals, Commutative Harmonic Analysis (1992), Berlin: Springer, Berlin · Zbl 0782.42012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.