×

Periodic solutions for partial neutral non densely differential equations. (English) Zbl 1465.35386

Summary: This work investigates the existence of periodic solutions for the following partial neutral nonautonomous functional differential equation
\[ \begin{aligned} &\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{D}u_t = (A+B(t))\mathcal{D}u_t+F(t,u_t),\quad t\geq 0, \\ &u_0=\Phi\in\mathcal{C}=C([-r,0],X), \end{aligned}\tag{1} \]
where the linear operator \(A\) is not necessarily densely defined and satisfies the Hille-Yosida condition, \(B(t)\), \(t\in\mathbb{R}_+\), is a family of bounded linear operators from \(\overline{D(A)}\) into \(X\) and the nonlinear delayed part \(F\) satisfies some locally Lipschitz conditions. More precisely, we study the Massera problem for the existence of a \(\tau \)-periodic solution of (1). Then, we prove for \(\tau=1\), in the dichotomic case, the existence, uniqueness and conditional stability of the periodic solution. Finally, our results are illustrated by an application.

MSC:

35R10 Partial functional-differential equations
35B10 Periodic solutions to PDEs
47D06 One-parameter semigroups and linear evolution equations
34G20 Nonlinear differential equations in abstract spaces
Full Text: DOI

References:

[1] Hale, JK., Asymptotic behavior of dissipative systems, 25 (1988), Rhode Island: American Mathematical Society, Rhode Island · Zbl 0642.58013
[2] Hale, JK, Sjoerd, M, Verduyen, L.Introduction to functional differential equations; 1993. (Applied mathematical sciences). · Zbl 0787.34002
[3] Hale, JK., Partial neutral functional differential equations, Rev Roumaine Math Pure Appli, 39, 339-344 (1994) · Zbl 0817.35119
[4] Wu, J.; Xia, H., Self-sustained oscillations in a ring array of coupled lossless trans-mission lines, J Differential Equations, 124, 247-278 (1996) · Zbl 0840.34080 · doi:10.1006/jdeq.1996.0009
[5] Wu, J.; Xia, H., Rotating waves in neutral partial functional differential equations, J Dynam Differential Equations, 11, 209-238 (1999) · Zbl 0939.35188 · doi:10.1023/A:1021973228398
[6] Hino, Y, Naito, T, Minh, NV, et al.. Almost periodic solutions of differential equations in Banach spaces; 2002. (Stability and control: theory, methods and applications). · Zbl 1026.34001
[7] Jendoubi, C., Unstable manifolds of a class of delayed partial differential equations with nondense domain, Annales Polinicci Mathematici, 118, 181-208 (2016) · Zbl 1386.34099 · doi:10.4064/ap3913-11-2016
[8] Jendoubi, C., Integral manifolds of a class of delayed partial differential equations with nondense domain, Numer Funct Anal Optim, 38, 1024-1044 (2017) · Zbl 1375.34105 · doi:10.1080/01630563.2017.1309665
[9] Pazy, A., Semigroups of linear operators and applications to partial differential equations (1983), New York: Springer, New York · Zbl 0516.47023
[10] Wu, J., Theory and applications of partial functional differential Equations (1996), New York: Springer, New York · Zbl 0870.35116
[11] Liu, JH., Bounded and periodic solutions of differential equations in Banach space, J Appl Math Comput, 65, 141-150 (1994) · Zbl 0819.34041 · doi:10.1016/0096-3003(94)90171-6
[12] Liu, JH., Bounded and periodic solutions of finite delay evolution equations, Nonlinear Anal, 34, 101-111 (1998) · Zbl 0934.34066 · doi:10.1016/S0362-546X(97)00606-8
[13] Webb, GF., Theory of nonlinear age-dependent population dynamics (1985), Marcel Dekker · Zbl 0555.92014
[14] Yoshizawa, T., Stability theory and the existence of periodic solutions and almost periodic solutions, 14 (1975), New York: Springer, New York · Zbl 0304.34051
[15] Burton, T., Stability and periodic solutions of ordinary and functional differential equations (1985), Orlando (FL): Academic Press, Orlando (FL) · Zbl 0635.34001
[16] Liu, JH; N’Guerekata, GM; Minh, NV., Topics on stability and periodicity in abstract differential equations, 6 (2008), Singapore: World Scientific, Singapore · Zbl 1158.34002
[17] Pruss, J., Periodic solutions of semilinear evolution equations, Nonlinear Anal, 3, 601-612 (1979) · Zbl 0419.34061 · doi:10.1016/0362-546X(79)90089-0
[18] Pruss, J.Periodic solutions of the thermostat problem. In: Differential equations in Banach spaces. Berlin: Springer; 1986. p. 216-226 (Lecture notes in math.; 1223). · Zbl 0645.45003
[19] Serrin, J., A note on the existence of periodic solutions of the Navier-Stokes equations, Arch Rational Mech Anal, 3, 120-122 (1959) · Zbl 0089.19102 · doi:10.1007/BF00284169
[20] Murray, JD., Mathematical biology I: an introduction (2002), Berlin: Springer, Berlin · Zbl 1006.92001
[21] Murray, JD., Mathematical biology II: spatial models and biomedical applications (2003), Berlin: Springer, Berlin · Zbl 1006.92002
[22] Yagi, A., Abstract parabolic evolution equations and their applications (2009), Springer
[23] Dang, NQ; Huy, NT., Dichotomy and periodic solutions to partial functional differential equations, Discrete Contin Dyn Syst, 22, 3127-3144 (2017) · Zbl 1401.34084 · doi:10.3934/dcdsb.2017167
[24] Rhandi, A., Extrapolation methods to solve non-autonomous retarded partial differential equations, Studia Math, 126, 3, 219-233 (1998) · Zbl 0907.47041 · doi:10.4064/sm-126-3-219-233
[25] Chicone, C.; Latushkin, Y., Evolution semigroups in dynamical systems and differential equations, 70 (1999), Providence (RI): American Mathematical Society, Providence (RI) · Zbl 0970.47027
[26] Guhring, G.; Rabiger, F., Asymptotic properties of mild solutions for non-autonomous evolution equations with applications to retarded differential equations, J Abstract Appl Anal, 4, 169-194 (1999) · Zbl 0987.34062 · doi:10.1155/S1085337599000214
[27] Latushkin, Y.; Randolph, T.; Schnaubelt, R., Exponential dichotomy and mild solutions of nonautonomous equations in Banach spaces, J Dynam Differential Equations, 10, 3, 489-510 (1998) · Zbl 0908.34045 · doi:10.1023/A:1022609414870
[28] Nagel, R.; Nickel, G., Well posedness for non-autonomous abstract Cauchy problems, Prog Nonlinear Differential Equations Appl, 50, 279-239 (2002) · Zbl 1058.34074
[29] Nagel, R, Sinestrari, E.Inhomogeneous Volterra integrodifferential equations for Hille-Yosida operators. In: Functional analysis (Essen, 1991). New York: Dekker; 1994. p. 51-70. (Lecture notes in pure and appl. math.; 150). · Zbl 0790.45011
[30] Minh, NV; Rabiger, F.; Schnaubelt, R., Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line, Integral Equations Operator Theory, 32, 332-353 (1998) · Zbl 0977.34056 · doi:10.1007/BF01203774
[31] Dang, NQ; Huy, NT., Periodic solutions to evolution equations: existence, conditional stability and admissibility of function spaces, Ann Polon Math, 116, 173-195 (2016) · Zbl 1353.34048
[32] Huy, NT., Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line, J Funct Anal, 235, 330-354 (2006) · Zbl 1126.47060 · doi:10.1016/j.jfa.2005.11.002
[33] Huy, NT., Stable manifolds for semi-linear evolution equations and admissibility of function spaces on a half-line, J Math Anal Appl, 354, 372-386 (2009) · Zbl 1170.34042 · doi:10.1016/j.jmaa.2008.12.062
[34] Da Prato, G.; Sinestrari, E., Differential operators with non-dense domain, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 14, 285-344 (1987) · Zbl 0652.34069
[35] Arendt, W.; Grabosch, A.; Greiner, G., One-parameter semigroup of positive operators, 1184 (1984), Berlin: Springer, Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.