×

Strongly nonzero points and elliptic pseudoprimes. (English) Zbl 1465.11190

Summary: Efficiently distinguishing prime and composite numbers is one of the fundamental problems in number theory. A Fermat pseudoprime is a composite number \(N\) which satisfies Fermat’s little theorem for a specific base \(b: b^{N-1}\equiv 1 \mod{N}\). A Carmichael number \(N\) is a Fermat pseudoprime for all \(b\) with \(\mathrm{gcd}(b,N)=1\). D. M. Gordon [in: Théorie des nombres, C. R. Conf. Int., Québec/Can. 1987, 290–305 (1989; Zbl 0684.10006)] introduced analogues of Fermat pseudoprimes and Carmichael numbers for elliptic curves with complex multiplication (CM): elliptic pseudoprimes, strong elliptic pseudoprimes and elliptic Carmichael numbers. It has previously been shown that no CM curve has a strong elliptic Carmichael number. We give bounds on the fraction of points on a curve for which a fixed composite number \(N\) can be a strong elliptic pseudoprime. J. H. Silverman [Acta Arith. 155, No. 3, 233–246 (2012; Zbl 1304.11047)] extended Gordon’s notion of elliptic pseudoprimes and elliptic Carmichael numbers to arbitrary elliptic curves. We provide probabilistic bounds for whether a fixed composite number \(N\) is an elliptic Carmichael number for a randomly chosen elliptic curve.

MSC:

11N25 Distribution of integers with specified multiplicative constraints
11G07 Elliptic curves over local fields
11G20 Curves over finite and local fields
14H52 Elliptic curves
14K22 Complex multiplication and abelian varieties

References:

[1] 10.2140/obs.2013.1.1 · doi:10.2140/obs.2013.1.1
[2] 10.4007/annals.2004.160.781 · Zbl 1071.11070 · doi:10.4007/annals.2004.160.781
[3] 10.2307/2118576 · Zbl 0816.11005 · doi:10.2307/2118576
[4] 10.1145/12130.12162 · doi:10.1145/12130.12162
[5] ; Gordon, Théorie des nombres, 290 (1989)
[6] ; Korselt, L’intermédiare des mathématiciens, 6, 143 (1899)
[7] 10.2307/1971363 · Zbl 0629.10006 · doi:10.2307/1971363
[8] 10.1007/BF01389815 · Zbl 0245.14015 · doi:10.1007/BF01389815
[9] ; Pomerance, Congr. Numer., 201, 301 (2010) · Zbl 1203.11083
[10] 10.1007/978-1-4757-1920-8 · doi:10.1007/978-1-4757-1920-8
[11] 10.4064/aa155-3-1 · Zbl 1304.11047 · doi:10.4064/aa155-3-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.