×

Survival criterion for a population subject to selection and mutations; application to temporally piecewise constant environments. (English) Zbl 1464.92184

Summary: We study a parabolic Lotka-Volterra type equation that describes the evolution of a population structured by a phenotypic trait, under the effects of mutations and competition for resources modelled by a nonlocal feedback. The limit of small mutations is characterized by a Hamilton-Jacobi equation with constraint that describes the concentration of the population on some traits. This result was already established in [B. Perthame and G. Barles, Indiana Univ. Math. J. 57, No. 7, 3275–3302 (2008; Zbl 1172.35005); G. Barles et al., Methods Appl. Anal. 16, No. 3, 321–340 (2009; Zbl 1204.35027); A. Lorz et al., Commun. Partial Differ. Equations 36, No. 4–6, 1071–1098 (2011; Zbl 1229.35113)] in a time-homogeneous environment, when the asymptotic persistence of the population was ensured by assumptions on either the growth rate or the initial data. Here, we relax these assumptions to extend the study to situations where the population may go extinct at the limit. For that purpose, we provide conditions on the initial data for the asymptotic fate of the population. Finally, we show how this study for a time-homogeneous environment allows to consider temporally piecewise constant environments.

MSC:

92D15 Problems related to evolution
92D25 Population dynamics (general)

References:

[1] Fournier, N.; Méléard, S., A microscopic probabilistic description of a locally regulated population and macroscopic approximations, Ann. Appl. Probab., 14, 4, 1880-1919 (2004) · Zbl 1060.92055
[2] Champagnat, N.; Ferrière, R.; Méléard, S., From individual stochastic processes to macroscopic models in adaptive evolution, Stoch. Models, 24, SUPPL. 1, 2-44 (2008) · Zbl 1157.60339
[3] Calsina, A.; Cuadrado, S., Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics, J. Math. Biol., 48, 2, 135-159 (2004) · Zbl 1078.92051
[4] Diekmann, O.; Jabin, P.-E.; Mischler, S.; Perthame, B., The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theoret. Popul. Biol., 67, 4, 257-271 (2005) · Zbl 1072.92035
[5] Desvillettes, L.; Jabin, P.-E.; Mischler, S.; Raoul, G., On mutation-selection dynamics for continuous structured populations, Commun. Math. Sci., 6, 3, 729-747 (2008) · Zbl 1176.45009
[6] Barles, G.; Perthame, B., Dirac concentrations in Lotka-Volterra parabolic PDEs, Indiana Univ. Math. J., 3275-3301 (2008) · Zbl 1172.35005
[7] Jabin, P.-E.; Raoul, G., On selection dynamics for competitive interactions, J. Math. Biol., 63, 3, 493-517 (2011) · Zbl 1230.92038
[8] Raoul, G., Local stability of evolutionary attractors for continuous structured populations, Monatsh. Math., 165, 1, 117-144 (2012) · Zbl 1263.92035
[9] Barles, G.; Mirrahimi, S.; Perthame, B., Concentration in Lotka-Volterra parabolic or integral equations: A general convergence result, Methods Appl. Anal., 16, 3, 321-340 (2009) · Zbl 1204.35027
[10] Lorz, Alexander; Mirrahimi, Sepideh; Perthame, Benoît, Dirac mass dynamics in multidimensional nonlocal parabolic equations, Comm. Partial Differential Equations, 36, 6, 1071-1098 (2011) · Zbl 1229.35113
[11] Crandall, M. G.; Ishii, H.; Lions, P.-L., User’s Guide to Viscosity Solutions of Second Order Partial Differential Equations (1992), American Mathematical Society · Zbl 0755.35015
[12] Barles, G., (Solutions de Viscosité des Équations de Hamilton-Jacobi. Solutions de Viscosité des Équations de Hamilton-Jacobi, Mathématiques et Applications (1994), Springer Berlin Heidelberg) · Zbl 0819.35002
[13] Lorenzi, T.; Chisholm, R. H.; Desvillettes, L.; Hughes, B. D., Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments, J. Theoret. Biol., 386, 166-176 (2015) · Zbl 1343.92320
[14] Almeida, L.; Bagnerini, P.; Fabrini, G.; Hughes, B. D.; Lorenzi, T., Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model, ESAIM Math. Model. Numer. Anal., 53, 1157-1190 (2019) · Zbl 1442.35193
[15] Mirrahimi, S.; Perthame, B.; Souganidis, P. E., Time fluctuations in a population model of adaptive dynamics, Ann. Inst. H. Poincare (C) Non Linear Anal., 32, 1, 41-58 (2015) · Zbl 1312.35011
[16] Figueroa Iglesias, S.; Mirrahimi, S., Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments, SIAM J. Math. Anal., 50, 5, 5537-5568 (2018) · Zbl 1491.35272
[17] C. Carrère, G. Nadin, Influence of mutations in phenotypically-structured populations in time periodic environment. preprint. · Zbl 1445.35022
[18] S. Figueroa Iglesias, S. Mirrahimi, Selection and mutation in a shifting and fluctuating environment. Preprint. · Zbl 1491.35272
[19] Alfaro, M.; Carles, R., Replicator-mutator equations with quadratic fitness, Proc. Amer. Math. Soc., 145, 5315-5327 (2017) · Zbl 1376.92037
[20] Mirrahimi, S.; Roquejoffre, J.-M., A class of Hamilton-Jacobi equations with constraint: Uniqueness and constructive approach, J. Differential Equations, 260, 5, 4717-4738 (2016) · Zbl 1342.35066
[21] Calvez, V.; Lam, K.-Y., Uniqueness of the viscosity solution of a constrained Hamilton-Jacobi equation, Calc. Var. Partial Differential Equations, 59, 163 (2020) · Zbl 1448.35102
[22] Barles, G.; Biton, S.; Ley, O., A geometrical approach to the study of unbounded solutions of quasilinear parabolic equations, Arch. Ration. Mech. Anal., 162, 287-325 (2002) · Zbl 1052.35084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.