×

Cell models for viscous flow past a swarm of Reiner-Rivlin liquid spherical drops. (English) Zbl 1464.76025

Summary: This paper presents an analytical study of Stokes flow of an incompressible viscous fluid through a swarm of immiscible Reiner-Rivlin liquid droplets-in-cell using the cell model technique. The stream function solution of Stokes equation is obtained for the flow in the fictitious envelope region, while for the inner flow field within the liquid drop, the solution is obtained by expanding the stream function in a power series of \(S\). The proper boundary conditions are taken on the surface of the liquid sphere, while the appropriate conditions applied on the fictitious boundary of the fluid envelope vary depending on the kind of cell-model. The analytical solution of the problem for four models: Happel’s, Kuwabara’s, Kvashnin’s and Mehta-Morse’s model (usually referred to as Cunningham’s) is derived. The velocity profile and the pressure distribution outside of the droplet are shown in numerous graphs for different values of the parameters. Numerical results for the normalized hydrodynamic drag force \(W_{C}\) acting, in each case, on the spherical droplet-in-cell obtained for different values of the parameters characterizing volume fraction \(\gamma \), the relative viscosity \(\lambda\), and the cross-viscosity, i.e., \(S\) are presented in tabular and graphical forms as well. It is found that normalized hydrodynamic drag force \(W_{C}\) is a monotonic increasing function of particle volume fraction \(\gamma \). It is also observed that solid sphere in-cell experiences greater drag force \(C_{D}\), whereas spherical bubble experiences smaller. One of the important findings of the present investigation is that the cross-viscosity \(\mu_{c}\) of Reiner-Rivlin fluid decreases \(W_{C}\) on the liquid droplet-in-cell. Further, the drag coefficient \(C_{D}\) get reduced to analytical results obtained earlier.

MSC:

76D07 Stokes and related (Oseen, etc.) flows
76T06 Liquid-liquid two component flows
76A05 Non-Newtonian fluids
Full Text: DOI

References:

[1] Abramowitz M, Stegun IA (1970) Handbook of mathematical functions. Dover, New York · Zbl 0171.38503
[2] Bart E (1968) The slow unsteady settling of a fluid sphere toward a flat fluid interface. Chem Eng Sci 23:193-210 · doi:10.1016/0009-2509(86)85144-2
[3] Brenner H (1957) Eng. Sc. D. thesis, New York University, New York
[4] Choudhuri D, Sri Padamavati B (2010) A study of an arbitrary Stokes flow past a fluid coated sphere in a fluid of a different viscosity. Z Angew Math Phys 61:317-328 · Zbl 1333.76031 · doi:10.1007/s00033-009-0056-5
[5] Cunningham E (1910) On the velocity of steady fall of spherical particles through fluid medium. Proc R Soc Lond Ser A 83:357-369 · JFM 41.0843.05 · doi:10.1098/rspa.1910.0024
[6] Dassios G, Hadjinicolaou M, Coutelieris FA, Payatakes AC (1995) Stokes flow in spheroidal particle-in-cell models with Happel and Kuwabara boundary conditions. Int J Eng Sci 33:1465-1490 · Zbl 0899.76118 · doi:10.1016/0020-7225(95)00010-U
[7] Datta S, Deo S (2002) Stokes flow with slip and Kuwabara boundary conditions. Proc Ind Acad Sci (Math Sci) 112:463-475 · Zbl 1042.35054 · doi:10.1007/BF02829798
[8] Deo S, Gupta BR (2009) Stokes flow past a swarm of porous approximately spheroidal particles with Kuwabara boundary condition. Acta Mech 203:241-254 · Zbl 1163.76013 · doi:10.1007/s00707-008-0048-0
[9] Deo S, Shukla P (2009) Creeping flow past a swarm of porous spherical particles with Mehta-Morse boundary condition. Indian J Biomech 7-8:123-127
[10] Deo S (2009) Stokes flow past a swarm of deformed porous spheroidal particles with Happel boundary condition. J Porous Media 12:347-359 · doi:10.1615/JPorMedia.v12.i4.50
[11] Datta S, Raturi S (2014) Cell model for slow viscous flow past spherical particles with surfactant layer coating. J Appl Fluid Mech 7:263-273
[12] Faltas MS, Saad EI (2012) Slow motion of a porous eccentric spherical particle-in-cell models. Transp Porous Media 95:133-150 · doi:10.1007/s11242-012-0036-7
[13] Gupta BR, Deo S (2013) Axisymmetric creeping flow of a micropolar fluid over a sphere coated with a thin fluid film. J Appl Fluid Mech 6:149-155
[14] Happel J (1958) Viscous flow in multi particle system: slow motion of fluids relative to beds of spherical particles. AIChE J 4:197-201 · doi:10.1002/aic.690040214
[15] Happel J (1959) Viscous flow relative to arrays of cylinders. AIChE J 5:174-177 · doi:10.1002/aic.690050211
[16] Happel J, Brenner H (1983) Low Reynolds number hydrodynamics. Martinus Nijhoff, The Hague · Zbl 0612.76032
[17] Hetsroni G, Haber S (1970) The flow in and around a droplet or bubble submerged in an unbounded arbitrary velocity field. Rheol Acta 9:488-496 · Zbl 0223.76037 · doi:10.1007/BF01985457
[18] Jaiswal BR, Gupta BR (2014) Drag on Reiner-Rivlin liquid sphere placed in a micro-polar fluid with non-zero boundary condition for microrotations. Int J Appl Math Mech 10:90-103
[19] Jaiswal BR, Gupta BR (2015) Brinkman flow of a viscous fluid past a Reiner-Rivlin liquid sphere immersed in a saturated porous medium. Transp Porous Media 7:907-925 · doi:10.1007/s11242-015-0472-2
[20] Jaiswal BR, Gupta BR (2014) Wall effects on Reiner-Rivlin liquid spheroid. Appl Comput Mech 2:157-176
[21] Jaiswal BR, Gupta BR (2015) Stokes flow of polar fluid past a non-Newtonian liquid spheroid. Int J Fluid Mech Res 42:170-189 · doi:10.1615/InterJFluidMechRes.v42.i2.60
[22] Jaiswal BR, Gupta BR (2014) Reiner-Rivlin liquid sphere in an approximate spherical container (communicated)
[23] Keh HJ, Lee TC (2010) Axisymmetric creeping motion of a slip spherical particle in a non-concentric spherical cavity. Theor Comput Fluid Dyn 24:497-510 · Zbl 1234.76013 · doi:10.1007/s00162-010-0181-y
[24] Keh MP, Keh HJ (2010) Slow motion of an assemblage of porous spherical shells relative to a fluid. Transp Porous Media 81:261-275 · doi:10.1007/s11242-009-9399-9
[25] Kim S, Karrila SJ (1991) Micro hydrodynamics: principles and selected applications. Butterworth-Heinemann, Boston
[26] Kuwabara S (1959) The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J Phys Soc Jpn 14:527-532 · doi:10.1143/JPSJ.14.527
[27] Kvashnin AG (1979) Cell model of suspension of spherical particles. Fluid Dyn 14:598-602 · Zbl 0422.76061 · doi:10.1007/BF01051266
[28] Mehta GD, Morse TF (1975) Flow through charged membranes. J Chem Phys 63:1878-1889 · doi:10.1063/1.431575
[29] Ramkissoon H, Majumadar SR (1976) Drag on axially symmetric body in the Stokes’ flow of micropolar fluids. Phys Fluids 19:16-21 · Zbl 0325.76007 · doi:10.1063/1.861320
[30] Ramkissoon H (1989) Slow flow of a non-Newtonian liquid past a fluid sphere. Acta Mech 78:73-80 · Zbl 0688.76070 · doi:10.1007/BF01174001
[31] Ramkissoon H (1989) Stokes flow past a Reiner-Rivlin liquid sphere. J Appl Math Mech (ZAMM) 69:259-261 · Zbl 0697.76017 · doi:10.1002/zamm.19890690809
[32] Ramkissoon H (1998) Stokes flow past a non-Newtonian fluid spheroid. J Appl Math Mech (ZAMM) 78:61-66 · Zbl 0901.76012 · doi:10.1002/(SICI)1521-4001(199801)78:1<61::AID-ZAMM61>3.0.CO;2-O
[33] Ramkissoon H (1999) Polar flow past a Reiner-Rivlin fluid sphere. J Math Sci 10:63-68
[34] Ramkissoon H, Rahaman K (2001) Non-Newtonian fluid sphere in a spherical container. Acta Mech 149:239-245 · Zbl 1017.76004 · doi:10.1007/BF01261675
[35] Reiner M (1945) A mathematical theory of dilatancy. Am J Math 67:350-362 · Zbl 0063.06464 · doi:10.2307/2371950
[36] Saad EI (2012) Cell models for micropolar flow past a viscous fluid sphere. Meccanica 47:2055-2068 · Zbl 1293.76017 · doi:10.1007/s11012-012-9575-9
[37] Saad EI (2012) Stokes flow past an assemblage of axisymmetric porous spheroidal particle-in-cell models. J Porous Media 15:849-866 · doi:10.1615/JPorMedia.v15.i9.40
[38] Saad EI (2013) Stokes flow past an assemblage of axisymmetric porous spherical shell-in-cell models: effect of stress jump condition. Meccanica 48:1747-1759 · Zbl 1293.76141 · doi:10.1007/s11012-013-9706-y
[39] Stokes GG (1851) On the effect of the internal friction of fluid on pendulums. Trans Camb Philos Soc 9:8-106
[40] Uchida S (1954) Slow viscous flow through a mass of particles. Ind Eng Chem 46:1194-1195 (transl: T. Motai)
[41] Vasin SI, Filippov AN, Starov VM (2008) Hydrodynamic permeability of membranes built up by particles covered by porous shells: cell models. Adv Colloid Interface Sci 139:83-96 · doi:10.1016/j.cis.2008.01.005
[42] Yadav PK, Tiwari A, Deo S, Filippov A, Vasin S (2010) Hydrodynamic permeability of membranes built up by spherical particles covered by porous shells: effect of stress jump condition. Acta Mech 215:193-209 · Zbl 1398.76223 · doi:10.1007/s00707-010-0331-8
[43] Zholkovskiy EK, Shilov VN, Masliyah JH, Bondarenko MP (2007) Hydrodynamic cell model: general formulation and comparative analysis of different approaches. Can J Chem Eng 85:701-725 · doi:10.1002/cjce.5450850517
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.