×

Estimation of Covid-19 prevalence from serology tests: a partial identification approach. (English) Zbl 1464.62476

Summary: We propose a partial identification method for estimating disease prevalence from serology studies. Our data are results from antibody tests in some population sample, where the test parameters, such as the true/false positive rates, are unknown. Our method scans the entire parameter space, and rejects parameter values using the joint data density as the test statistic. The proposed method is conservative for marginal inference, in general, but its key advantage over more standard approaches is that it is valid in finite samples even when the underlying model is not point identified. Moreover, our method requires only independence of serology test results, and does not rely on asymptotic arguments, normality assumptions, or other approximations. We use recent Covid-19 serology studies in the US, and show that the parameter confidence set is generally wide, and cannot support definite conclusions. Specifically, recent serology studies from California suggest a prevalence anywhere in the range 0%–2% (at the time of study), and are therefore inconclusive. However, this range could be narrowed down to 0.7%–1.5% if the actual false positive rate of the antibody test was indeed near its empirical estimate \((\sim 0.5\%)\). In another study from New York state, Covid-19 prevalence is confidently estimated in the range 13%–17% in mid-April of 2020, which also suggests significant geographic variation in Covid-19 exposure across the US. Combining all datasets yields a 5%–8% prevalence range. Our results overall suggest that serology testing on a massive scale can give crucial information for future policy design, even when such tests are imperfect and their parameters unknown.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis

References:

[1] Alvarez, F. E.; Argente, D.; Lippi, F., A Simple Planning Problem for Covid-19 LockdownTech. rep. (2020), National Bureau of Economic Research
[2] Baggett, T. P.; Keyes, H.; Sporn, N.; Gaeta, J. M., Prevalence of sars-cov-2 infection in residents of a large homeless shelter in boston, JAMA (2020)
[3] Bendavid, E.; Mulaney, B.; Sood, N.; Shah, S.; Ling, E.; Bromley-Dulfano, R.; Lai, C.; Weissberg, Z.; Saavedra, R.; Tedrow, J., Covid-19 antibody seroprevalence in santa clara county, california (2020), medRxiv
[4] Beresteanu, A.; Molchanov, I.; Molinari, F., Partial identification using random set theory, J. Econometrics, 166, 1, 17-32 (2012) · Zbl 1441.62607
[5] Chen, X.; Christensen, T. M.; Tamer, E., Monte Carlo confidence sets for identified sets, Econometrica, 86, 6, 1965-2018 (2018) · Zbl 1416.62660
[6] Chernozhukov, V.; Hong, H.; Tamer, E., Estimation and confidence regions for parameter sets in econometric models 1, Econometrica, 75, 5, 1243-1284 (2007) · Zbl 1133.91032
[7] van Dissel, J., Covid-19: technische briefing tweede kamer (2020), Rijksinstituut voor Volksgezondheid en Milieu
[8] Doi, A.; Iwata, K.; Kuroda, H.; Hasuike, T.; Nasu, S.; Kanda, A.; Nagao, T.; Nishioka, H.; Tomii, K.; Morimoto, T., Estimation of seroprevalence of novel coronavirus disease (covid-19) using preserved serum at an outpatient setting in kobe, Japan: A cross-sectional study (2020), medRxiv
[9] Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, H.; Coupland, H.; Mellan, T.; Zhu, H.; Berah, T.; Eaton, J.; Perez Guzman, P., Report 13: Estimating the number of infections and the impact of non-pharmaceutical interventions on covid-19 in 11 European countries (2020)
[10] Garcia-Basteiro, A. L., Seroprevalence of antibodies against sars-cov-2 among health care workers in a large spanish reference hospital (2020), medRxiv
[11] Gelman, A.; Carpenter, B., Bayesian analysis of tests with unknown specificity and sensitivity (2020), medRxiv
[12] Honoré, B. E.; Tamer, E., Bounds on parameters in panel dynamic discrete choice models, Econometrica, 74, 3, 611-629 (2006) · Zbl 1128.62125
[13] Hortaçsu, A.; Liu, J.; Schwieg, T., Estimating the Fraction of Unreported Infections in Epidemics with a Known Epicenter: an Application to COVID-19Tech. rep. (2020), National Bureau of Economic Research
[14] Imbens, G. W.; Manski, C. F., Confidence intervals for partially identified parameters, Econometrica, 72, 6, 1845-1857 (2004) · Zbl 1091.62015
[15] Kaido, H.; Molinari, F.; Stoye, J., Confidence intervals for projections of partially identified parameters, Econometrica, 87, 4, 1397-1432 (2019) · Zbl 1431.62204
[16] Lavezzo, E.; Franchin, E.; Ciavarella, C.; Cuomo-Dannenburg, G.; Barzon, L.; Del Vecchio, C.; Rossi, L.; Manganelli, R.; Loregian, A.; Navarin, N., Suppression of covid-19 outbreak in the municipality of vo, Italy (2020), medRxiv
[17] Lehmann, E. L.; Romano, J. P., Testing Statistical Hypotheses (2006), Springer Science & Business Media · Zbl 1076.62018
[18] Levesque, J.; Maybury, D. W., A note on covid-19 seroprevalence studies: a meta-analysis using hierarchical modelling (2020), medRxiv
[19] Li, R.; Pei, S.; Chen, B.; Song, Y.; Zhang, T.; Yang, W.; Shaman, J., Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (sars-cov2), Science (2020)
[20] Liang, Y.; Liang, J.; Zhou, Q.; Li, X.; Lin, F.; Deng, Z.; Zhang, B.; Li, L.; Wang, X.; Zhu, H., Prevalence and clinical features of 2019 novel coronavirus disease (covid-19) in the fever clinic of a teaching hospital in Beijing: a single-center, retrospective study (2020), medRxiv
[21] Lu, F. S.; Nguyen, A.; Link, N.; Santillana, M., Estimating the prevalence of covid-19 in the United States: Three complementary approaches (2020)
[22] Manski, C. F., Partial Identification of Probability Distributions (2003), Springer Science & Business Media · Zbl 1047.62001
[23] Manski, C. F., Partial identification of counterfactual choice probabilities, Internat. Econom. Rev., 48, 4, 1393-1410 (2007)
[24] Manski, C. F., Partial identification in econometrics, (Microeconometrics (2010), Springer), 178-188
[25] Manski, C. F.; Molinari, F., Estimating the COVID-19 Infection Rate: Anatomy of an Inference ProblemTech. rep. (2020), National Bureau of Economic Research
[26] Romano, J. P.; Shaikh, A. M., Inference for identifiable parameters in partially identified econometric models, J. Statist. Plann. Inference, 138, 9, 2786-2807 (2008) · Zbl 1141.62096
[27] Romano, J. P.; Shaikh, A. M., Inference for the identified set in partially identified econometric models, Econometrica, 78, 1, 169-211 (2010) · Zbl 1185.62198
[28] Spellberg, B.; Haddix, M.; Lee, R.; Butler-Wu, S.; Holtom, P.; Yee, H.; Gounder, P., Community prevalence of sars-cov-2 among patients with influenzalike illnesses presenting to a los angeles medical center in march 2020, JAMA (2020)
[29] Stoye, J., More on confidence intervals for partially identified parameters, Econometrica, 77, 4, 1299-1315 (2009) · Zbl 1183.62053
[30] Streeck, H.; Schulte, B.; Kuemmerer, B.; Richter, E.; Höller, T.; Fuhrmann, C.; Bartok, E.; Dolscheid, R.; Berger, M.; Wessendorf, L., Infection fatality rate of sars-cov-2 infection in a german community with a super-spreading event, medrxiv (2020)
[31] Stringhini, S.; Wisniak, A.; Piumatti, G.; Azman, A. S.; Lauer, S. A.; Baysson, H.; De Ridder, D.; Petrovic, D.; Schrempft, S.; Marcus, K., Repeated seroprevalence of anti-sars-cov-2 igg antibodies in a population-based sample from geneva, Switzerland (2020), medRxiv
[32] Sutton, D.; Fuchs, K.; D’alton, M.; Goffman, D., Universal screening for sars-cov-2 in women admitted for delivery, New Engl. J. Med. (2020)
[33] Tamer, E., Partial identification in econometrics, Annu. Rev. Econ., 2, 1, 167-195 (2010)
[34] Venkatesan, P., Estimate of covid-19 case prevalence in India based on surveillance data of patients with severe acute respiratory illness (2020), medRxiv
[35] Wooldridge, J.; Imbens, G., What’s new in econometrics? Lecture 9: partial identification, NBER Summer Inst., 9, 2011 (2007)
[36] Yadlowsky, S.; Shah, N.; Steinhardt, J., Estimation of sars-cov-2 infection prevalence in santa clara county (2020), medRxiv
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.