×

Numerical scheme for stochastic differential equations driven by fractional Brownian motion with \(1/4 < H < 1/2\). (English) Zbl 1464.60070

Summary: In this article, we study a numerical scheme for stochastic differential equations driven by fractional Brownian motion with Hurst parameter \(H \in (1/4, 1/2)\). Toward this end, we apply Doss-Sussmann representation of the solution and an approximation of this representation using a first-order Taylor expansion. The obtained rate of convergence is \(n^{-2H + \rho}\), for \(\rho\) small enough.

MSC:

60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
60G22 Fractional processes, including fractional Brownian motion
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

References:

[1] Alòs, E.; León, JA; Nualart, D., Stochastic Stratonovich calculus fBm for fractional Brownian motion with Hurst parameter less than 1/2, Taiwan. J. Math., 5, 3, 609-632 (2001) · Zbl 0989.60054 · doi:10.11650/twjm/1500574954
[2] Alòs, E.; León, JA; Vives, J., On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility, Finance Stoch., 11, 4, 571-589 (2007) · Zbl 1145.91020 · doi:10.1007/s00780-007-0049-1
[3] Alòs, E.; Nualart, D., Stochastic integration with respect to the fractional Brownian motion, Stoch. Stoch. Rep., 75, 3, 129-152 (2003) · Zbl 1028.60048 · doi:10.1080/1045112031000078917
[4] H. Araya, J.A. León, and S.Torres. On local linearization method for Stochastic Differential Equations driven by fractional Brownian motion (2018, Preprint)
[5] Deya, A.; Neuenkirch, A.; Tindel, S., A Milstein-type scheme without Lévy area terms for SDEs driven by fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist., 48, 2, 518-550 (2012) · Zbl 1260.60135 · doi:10.1214/10-AIHP392
[6] Doss, H., Liens entre èquations diffèrentielles stochastiques et ordinaires, Ann. Inst. H. Poincarè Sect. B(N.S), 13, 99-125 (1977) · Zbl 0359.60087
[7] Garzón, J.; Gorostiza, LG; León, JA, Approximations of fractional stochastic differential equations by means of transport processes, Commun. Stoch. Anal., 3, 5, 433-456 (2011) · Zbl 1331.60064
[8] Hu, Y.; Liu, Y.; Nualart, D., Rate of convergence and asymptotic error distribution of Euler approximation schemes for fractional diffusion, Ann. Appl. Prob., 26, 2, 1147-1207 (2016) · Zbl 1339.60095 · doi:10.1214/15-AAP1114
[9] Kaj, I., Taqqu, M.S.: Convergence to Fractional Brownian Motion and to the Telecom Process: The Integral Representation Approach, pp. 383-427. Birkhäuser Basel, Basel (2008) · Zbl 1154.60020
[10] Kloeden, P.; Platen, E., Numerical Solution of Stochastic Differential Equations (1992), Berlin: Springer, Berlin · Zbl 0925.65261
[11] Klüppelberg, C.; Kühn, C., Fractional Brownian motion as a weak limit of Poisson shot noise processes with applications to finance, Stoch. Process. Appl., 113, 2, 333-351 (2004) · Zbl 1075.60020 · doi:10.1016/j.spa.2004.03.015
[12] Liu, Y., Tindel, S.: First-order Euler scheme for SDEs driven by fractional Brownian motions: the rough case. Ann. Appl. Probab. 29(2), 758-826 (2019) · Zbl 1467.60042
[13] Mishura, Y.; Shevchenko, G., The rate of convergence for Euler approximations of solutions of stochastic differential equations driven by fractional Brownian motion, Stoch. Int. J. Probab. Stoch. Processes, 80, 5, 489-511 (2008) · Zbl 1154.60046 · doi:10.1080/17442500802024892
[14] Nourdin, I.; Neuenkirch, A., Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion, J. Theor. Probab., 20, 4, 871-899 (2007) · Zbl 1141.60043 · doi:10.1007/s10959-007-0083-0
[15] Sussmann, HJ, On the gap between deterministic and stochastic ordinary differential equations, Ann. Probab., 6, 1, 19-41 (1978) · Zbl 0391.60056 · doi:10.1214/aop/1176995608
[16] Talay, D., Resolution trajectorielle et analyse numerique des equations differentielles stochastiques, Stochastics, 9, 4, 275-306 (1983) · Zbl 0512.60041 · doi:10.1080/17442508308833257
[17] Zähle, M., Integration with respect to fractal functions and stochastic calculus I, Probab. Theory Relat. Fields, 111, 333-374 (1998) · Zbl 0918.60037 · doi:10.1007/s004400050171
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.