×

On admissible orders over closed subintervals of \([0, 1]\). (English) Zbl 1464.03068

Summary: In this paper, we make some considerations about admissible orders on the set of closed subintervals of the unit interval \(\mathbb{I} [0, 1]\), i.e. linear orders that refine the product order on intervals. We propose a new way to generate admissible orders on \(\mathbb{I} [0, 1]\) which is more general than those we find in the current literature. Also, we deal with the possibility of an admissible order on \(\mathbb{I} [0, 1]\) to be isomorphic to the usual order on \([0, 1]\). We prove that some orders constructed by our method are not isomorphic to the usual one and we make some considerations about the following question: is there some admissible order on \(\mathbb{I} [0, 1]\) isomorphic to the usual order on \([0, 1]\)?

MSC:

03E72 Theory of fuzzy sets, etc.
06A06 Partial orders, general
Full Text: DOI

References:

[1] Asiaín, M. J.; Bustince, H.; Mesiar, R.; Kolesárová, A.; Takáč, Z., Negations with respect to admissible orders in the interval-valued fuzzy set theory, IEEE Trans. Fuzzy Syst., 26, 2, 556-568 (2017)
[2] Asmus, T. C.; Dimuro, G. P.; Bedregal, B., On two-player interval-valued fuzzy Bayesian games, Int. J. Intell. Syst., 32, 6, 557-596 (2017)
[3] Barrenechea, E.; Fernandez, J.; Pagola, M.; Chiclana, F.; Bustince, H., Construction of interval-valued fuzzy preference relations from ignorance functions and fuzzy preference relations. Application to decision making, Knowl.-Based Syst., 58, 33-44 (2014)
[4] Bentkowska, U.; Bustince, H.; Jurio, A.; Pagola, M.; Pekala, B., Decision making with interval-valued fuzzy preference relation and admissible orders, Appl. Soft Comput., 35, 792-801 (2015)
[5] Bernstein, F., Untersuchungen aus der Mengenlehre (1901), George-Augustus-Universität: George-Augustus-Universität Güttingen, Inaugural-Dissertation · JFM 32.0073.02
[6] Bernstein, F., Sur la théorie des ensembles, C. R. Hebd. Séances Acad. Sci., 143, 953-955 (1906) · JFM 37.0072.04
[7] Borel, E., Leçons sur la théorie des fonctions (1898), Gauthier-Villars · JFM 29.0336.01
[8] Bustince, H.; Barrenechea, E.; Pagola, M.; Fernandez, J., Interval-valued fuzzy sets constructed from matrices: application to edge detection, Fuzzy Sets Syst., 160, 1819-1840 (2009) · Zbl 1182.68191
[9] Bustince, H.; Fernandez, J.; Kolesárová, A.; Mesiar, R., Generation of linear orders for intervals by means of aggregation functions, Fuzzy Sets Syst., 220, 69-77 (2013) · Zbl 1284.03242
[10] Bustince, H.; Galar, M.; Bedregal, B.; Kolesárová, A.; Mesiar, R., A new approach to interval-valued Choquet integrals and the problem of ordering in interval-valued fuzzy set applications, IEEE Trans. Fuzzy Syst., 21, 6, 1150-1162 (2013)
[11] Cantor, G., Beiträge zur Begründung der transfiniten Mengenlehre, Math. Ann., 46, 481-512 (1895) · JFM 26.0081.01
[12] Chalco-Cano, Y.; Román-Flores, H.; Gomide, F., A new type of approximation for fuzzy intervals, Fuzzy Sets Syst., 159, 111, 1376-1383 (2008) · Zbl 1176.03026
[13] Galar, M.; Fernandez, J.; Beliakov, G.; Bustince, H., Interval-valued fuzzy sets applied to stereo matching of color images, IEEE Trans. Image Process., 20, 7, 1949-1961 (2011) · Zbl 1372.94085
[14] Hinkis, A., Proofs of the Cantor-Bernstein Theorem: A Mathematical Excursion (2013), Birkhäuser · Zbl 1285.03001
[15] Hüllermeier, E.; Brinker, K., Learning valued preference structures for solving classification problems, Fuzzy Sets Syst., 159, 18, 2337-2352 (2008) · Zbl 1187.68394
[16] Li, S. G., Fuzzy intervals, Appl. Math. Lett., 14, 6, 737-740 (2001) · Zbl 1013.54003
[17] Lima, L.; Bedregal, B.; Bustince, H.; Barrenechea, E.; da Rocha, M. P., An interval extension of homogeneous and pseudo-homogeneous t-norms and t-conorms, Inf. Sci., 355-356, 328-347 (2016) · Zbl 1429.03097
[18] Nicolay, S.; Simons, L., Building Cantor’s bijection
[19] Palmeira, E. S.; Bedregal, B.; Mesiar, R.; Fernandez, J., A new way to extend t-norms, t-conorms and negations, Fuzzy Sets Syst., 240, 1-21 (2014) · Zbl 1315.03098
[20] Pang, B.; Xiu, Z., Lattice-valued interval operators and its induced lattice-valued convex structures, IEEE Trans. Fuzzy Syst., 26, 3, 1525-1534 (2018)
[21] Paternain, D.; Jurio, A.; Barrenechea, E.; Bustince, H.; Bedregal, B.; Szmidt, E., An alternative to fuzzy methods in decision-making problems, Expert Syst. Appl., 39, 9, 7729-7735 (2012)
[22] Reichbach, M., Une simple démonstration du théoréme de Cantor-Bernstein, Colloq. Math., 3, 163 (1955) · Zbl 0067.02702
[23] Rudin, W., Principles of Mathematical Analysis (1976), McGraw-Hill, Inc. · Zbl 0148.02903
[24] Santana, F.; Santiago, R., A generalized distance based on a generalized triangle inequality, Inf. Sci., 345, 106-115 (2016) · Zbl 1396.54030
[25] Santiago, R.; Bedregal, B.; Acióly, B., Formal aspects of correctness and optimality of interval computations, Form. Asp. Comput., 18, 2, 231-243 (2006) · Zbl 1104.65045
[26] Sanz, J.; Fernandez, A.; Bustince, H.; Herrera, F., A genetic tuning to improve the performance of fuzzy rule-based classification systems with interval-valued sets: degree of ignorance and lateral position, Int. J. Approx. Reason., 52, 6, 751-766 (2011)
[27] Schröder, E., Über zwei Definitionen der Endlichkeit und G. Cantor’sche Sätze, Abh. der Kaiserl. Leop.-Carol Deutchen Akademie der Naturforsher, 71, 6, 301-362 (1898) · JFM 29.0049.04
[28] Silva, L.; Moura, R.; Canuto, A.; Santiago, R.; Bedregal, B., New ways to calculate centers for interval data in fuzzy clustering algorithms, (Proc. 2014 IEEE Int. Conf. Fuzzy Syst.. Proc. 2014 IEEE Int. Conf. Fuzzy Syst., Beijing, China (2014))
[29] Silva, L.; Moura, R.; Canuto, A.; Santiago, R.; Bedregal, B., An interval-based framework for fuzzy clustering applications, IEEE Trans. Fuzzy Syst., 23, 6, 2174-2187 (2015)
[30] Tarski, A., A lattice-theoretical fixpoint theorem and its applications, Pac. J. Math., 5, 2, 285-309 (1955) · Zbl 0064.26004
[31] Xu, Z.; Yager, R., Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. Gen. Syst., 35, 4, 417-433 (2006) · Zbl 1113.54003
[32] Zadeh, L., The concept of a linguistic variable and its applications to approximate reasoning, Inf. Sci.. Inf. Sci., Inf. Sci.. Inf. Sci.. Inf. Sci., Inf. Sci., Inf. Sci., 9, 1, 43-80 (1975), Part III · Zbl 0404.68075
[33] Zapata, H.; Bustince, H.; Montes, S.; Bedregal, B.; Dimuro, G. P.; Takáč, Z.; Baczyński, M.; Fernandez, J., Interval-valued implications and interval-valued strong equality index with admissible orders, Int. J. Approx. Reason., 88, 91-109 (2017) · Zbl 1422.03049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.