×

A study of spectral element method for elliptic interface problems with nonsmooth solutions in \(\mathbb{R}^2\). (English) Zbl 1463.65395

Summary: The solution of the elliptic partial differential equation has interface singularity at the points which are either the intersections of interfaces or the intersections of interfaces with the boundary of the domain. The singularities that arises in the elliptic interface problems are very complex. In this article we propose an exponentially accurate nonconforming spectral element method for these problems based on [P. K. Dutt et al., Proc. Indian Acad. Sci., Math. Sci. 117, No. 1, 109–145 (2007; Zbl 1120.65125); the first author and G. N. Raju, Appl. Numer. Math. 60, No. 1–2, 38–54 (2010; Zbl 1189.65289)]. A geometric mesh is used in the neighbourhood of the singularities and the auxiliary map of the form \(z = \ln\xi\) is introduced to remove the singularities. The method is essentially a least-squares method and the solution can be obtained by solving the normal equations using the preconditioned conjugate gradient method (PCGM) without computing the mass and stiffness matrices. Numerical examples are presented to show the exponential accuracy of the method.

MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65F08 Preconditioners for iterative methods
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

IIMPACK

References:

[1] I. Babuska and B. Guo, On regularity of the solutions of elliptic problems with piecewise analytic data, part I: boundary value problems or linear elliptic equation of second order, SIAM J. Math. Anal. 19 (1988), 172-203. · Zbl 0647.35021 · doi:10.1137/0519014
[2] I. Babuska and B. Guo, On the regularity of interface problem in terms of countably normed spaces.
[3] I. Babuska, The finite element method for elliptic equations with discontinuous coeffcients, Computing 5 (1970), 207-213. · Zbl 0199.50603 · doi:10.1007/BF02248021
[4] J.W. Barrett and C.M. Elliott, Fitted and unfitted finite element methods for elliptic equations with smooth interfaces, IMA Journal of Numer. Anal. 7 (1987), 283-300. · Zbl 0629.65118 · doi:10.1093/imanum/7.3.283
[5] J.H. Bramble and J.T. King, A finite element method for interface problems in domains with smooth boundaries and interfaces, Adv. Com. Math. 6 (1996), 109-138. · Zbl 0868.65081 · doi:10.1007/BF02127700
[6] Y. Cao and M.D. Gunzburger, Least-square finite element approximations to solutions of interface problems, SIAM. J. Numer. Anal. 35 (1998), 393-405. · Zbl 0913.65096 · doi:10.1137/S0036142996303249
[7] P. Dutt, N. Kishore Kumar and C.S. Upadhyay, Nonconforming h-p spectral element methods for elliptic problems, Proc. Indian Acad. Sci (Math. Sci.) 117 (2007), 109-145. · Zbl 1120.65125 · doi:10.1007/s12044-007-0009-x
[8] P. Dutt, P. Biswas and G. Naga Raju, Preconditioners for spectral element methods for elliptic and parabolic problems, J. Comput. Appl. Math. 215 (2008), 152-166. · Zbl 1136.65092 · doi:10.1016/j.cam.2007.03.030
[9] P. Grisvard, Elliptic problems in nonsmooth domain, Pitman Publishing Inc., Pitman 1985. · Zbl 0695.35060
[10] B. Guo and H.S. Oh, The hp version of the finite element method for problems with interfaces, Int. J. Nume. Meth. Engg. 37 (1994), 1741-1762. · Zbl 0805.65103 · doi:10.1002/nme.1620371007
[11] H. Hon and Z. Huang, The direct of lines for the numerical solutions of interface problems, Comm. Meth. Appl. Mech. Engrg. 171 (1999), 61-75. · Zbl 0946.65124 · doi:10.1016/S0045-7825(98)00242-4
[12] R.B. Kellogg, Singularities in interface problems, Numerical Solution of Partial Differential Equations II, B. Hubbard, editor, Academic Press, New York, 1971.
[13] R.B. Kellogg, On the Poisson equation with intersecting interfaces, Applicable Analysis 4 (1975), 101-129. · Zbl 0307.35038
[14] R.B. Kellogg, Higher order singularities for interface problems, The mathematical foundations of the FEM with appl. to PDE, Acad. Press, 1972, 589-602. · Zbl 0262.35013
[15] N. Kishore Kumar, Nonconforming spectral element method for elasticity interface problems, Journal of Applied Mathematics and Informatics 32 (2014), 761-781. · Zbl 1298.74248 · doi:10.14317/jami.2014.761
[16] N. Kishore Kumar, P. Dutt and C.S. Upadyay, Nonconforming spectral/hp element methods for elliptic systems, Journal of Numer. Math. 17 (2009), 119-142. · Zbl 1170.65334
[17] N. Kishore Kumar and G. Naga Raju, Least-squares hp/spectral element method for elliptic problems, Applied Numerical Mathematics 60 (2010), 38-54. · Zbl 1189.65289 · doi:10.1016/j.apnum.2009.08.008
[18] N. Kishore Kumar and G. Naga Raju, Nonconforming least-squares method for elliptic partial differential equations with smooth interfaces, Journal of Scientific Computing 53 (2012), 295-319. · Zbl 1272.65093 · doi:10.1007/s10915-011-9572-5
[19] V.A. Kondratiev, The smoothness of a solution of Dirichlet’s problem for second order elliptic equations in a region with a piecewise smooth boundary, Differential’ nye Uraneniya, 6 (1970), 1831-1843 (and Differential Equations, 6, 1392-1401). · Zbl 0257.35025
[20] Z. Li and K. Ito, The immersed interface method: Numerical solutions of PDEs involving interfaces and irregular domains, Frontiers Appl. Math. 33, SIAM, Philadelphia, 2006. · Zbl 1122.65096
[21] T.R. Lucas and H.S. Oh, The method of auxiliary mapping for the finite element solutions of elliptic problems containing singularities, Jour. of Comp. Phy. 108 (1993), 327-342. · Zbl 0797.65083 · doi:10.1006/jcph.1993.1186
[22] S. Nicaise, Singularities in interface problems, Problems and Methods in Mathematical Physics, Springer Fachmedian Wiesbaden, 1994, 130-137. · Zbl 0814.35021
[23] M. Petzoldt, Regularity results for Laplace interface problems in two dimensions, Zeitschrift Fur Analysis and Ihre Anwendungen 20 (2001), 431-455. · Zbl 1165.35333 · doi:10.4171/ZAA/1024
[24] H.S. Oh and I. Babuska, The p version of the finite element method for the elliptic boundary value problems with interfaces, Comp. Meth. in Appl. Mech. and Eng. 97 (1992), 211-231. · Zbl 0762.65059 · doi:10.1016/0045-7825(92)90164-F
[25] S.K. Tomar, h-p Spectral element method for elliptic problems on non-smooth domains using parallel computers, Computing 78 (2006), 117-143. · Zbl 1109.65105 · doi:10.1007/s00607-006-0176-0
[26] Ch.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.