×

The free energy of a quantum Sherrington-Kirkpatrick spin-glass model for weak disorder. (English) Zbl 1462.82078

Summary: We extend two rigorous results of M. Aizenman et al. in their pioneering paper [Commun. Math. Phys. 112, 3–20 (1987; Zbl 1108.82312)] on the Sherrington-Kirkpatrick spin-glass model without external magnetic field to the quantum case with a “transverse field” of strength \(\mathsf{b}\). More precisely, if the Gaussian disorder is weak in the sense that its standard deviation \(\mathsf{v} > 0\) is smaller than the temperature \(1/\beta\), then the (random) free energy almost surely equals the annealed free energy in the macroscopic limit and there is no spin-glass phase for any \(\mathsf{b}/\mathsf{v} \geq 0\). The macroscopic annealed free energy turns out to be non-trivial and given, for any \(\beta \mathsf{v} > 0\), by the global minimum of a certain functional of square-integrable functions on the unit square according to a Varadhan large-deviation principle. For \(\beta \mathsf{v} < 1\) we determine this minimum up to the order \((\beta \mathsf{v})^4\) with the Taylor coefficients explicitly given as functions of \(\beta \mathsf{b}\) and with a remainder not exceeding \((\beta \mathsf{v})^6/16\). As a by-product we prove that the so-called static approximation to the minimization problem yields the wrong \(\beta \mathsf{b}\)-dependence even to lowest order. Our main tool for dealing with the non-commutativity of the spin-operator components is a probabilistic representation of the Boltzmann-Gibbs operator by a Feynman-Kac (path-integral) formula based on an independent collection of Poisson processes in the positive half-line with common rate \(\beta \mathsf{b}\). Its essence dates back to [M. Kac, Rocky Mt. J. Math. 4, 497–509 (1974; Zbl 0314.60052)], but the formula was published only in [“Dirac equation path integral: Interpreting the Grassmann variables”, Il Nuovo Cimento D 11, Paper No. 31, 31-39 (1989; doi:10.1007/BF02450232)] by B. Gaveau and L. S. Schulman.

MSC:

82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
60G15 Gaussian processes
60F10 Large deviations
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60J20 Applications of Markov chains and discrete-time Markov processes on general state spaces (social mobility, learning theory, industrial processes, etc.)

References:

[1] Adhikari, A.; Brennecke, C., Free energy of the quantum Sherrington-Kirkpatrick spin-glass model with transverse field, J. Math. Phys., 61, 083302 (2020) · Zbl 1454.82045 · doi:10.1063/5.0009291
[2] Aizenman, M.; Lebowitz, JL; Ruelle, D., Some rigorous results on the Sherrington-Kirkpatrick spin-glass model, Commun. Math. Phys., 112, 3-20 (1987) · Zbl 1108.82312 · doi:10.1007/BF01217677
[3] Aizenman, M.; Sims, R.; Starr, SL, An extended variational principle for the Sherrington-Kirkpatrick spin-glass model, Phys. Rev. B, 68, 214430 (2003) · doi:10.1103/PhysRevB.68.214403
[4] Auffinger, A.; Chen, W-K, The Parisi formula has a unique minimizer, Commun. Math. Phys., 335, 1429-1444 (2015) · Zbl 1320.82033 · doi:10.1007/s00220-014-2254-z
[5] Bauer, H., Probability Theory (1996), Berlin: de Gruyter, Berlin · Zbl 0868.60001 · doi:10.1515/9783110814668
[6] Bauschke, HH; Combettes, PL, Convex Analysis and Monotone Operator Theory in Hilbert Spaces (2017), Cham: Springer, Cham · Zbl 1359.26003 · doi:10.1007/978-3-319-48311-5
[7] Blanchard, P.; Brüning, E., Variational Methods in Mathematical Physics (1992), Berlin: Springer, Berlin · Zbl 0756.49023 · doi:10.1007/978-3-642-82698-6
[8] Bray, AJ; Moore, MA, Replica theory of quantum spin glasses, J. Phys. C, 13, L655-L660 (1980) · doi:10.1088/0022-3719/13/24/005
[9] Brout, R.; Müller, KA; Thomas, H., Tunnelling and collective excitations in a microscopic model of ferroelectricity, Solid State Commun., 4, 507-510 (1966) · doi:10.1016/0038-1098(66)90412-1
[10] Büttner, G.; Usadel, KD, Stability analysis of an Ising spin glass with transverse field, Phys. Rev. B, 41, 428-431 (1990) · doi:10.1103/PhysRevB.41.428
[11] Büttner, G.; Usadel, KD, Replica-symmetry breaking for the Ising spin glass in a transverse field, Phys. Rev. B, 42, 6385-6395 (1990) · doi:10.1103/PhysRevB.42.6385
[12] Campbell, NR, The study of discontinuous phenomena, Proc. Camb. Philos. Soc., 15, 117-136 (1909)
[13] Carmona, P.; Hu, Y., Universality in Sherrington-Kirkpatrick’s spin glass model, Ann. I. H. Poincaré PR, 42, 215-222 (2006) · Zbl 1099.82005 · doi:10.1016/j.anihpb.2005.04.001
[14] Cartier, P.; DeWitt-Morette, C., Functional Integration: Action and Symmetries (2006), Cambridge: Cambridge University Press, Cambridge · Zbl 1122.81004 · doi:10.1017/CBO9780511535062
[15] Chayes, L.; Crawford, N.; Ioffe, D.; Levit, A., The phase diagram of the quantum Curie-Weiss model, J. Stat. Phys., 133, 131-149 (2008) · Zbl 1152.82004 · doi:10.1007/s10955-008-9608-x
[16] Comets, F.; Neveu, J., The Sherrington-Kirkpatrick model of spin glasses and stochastic calculus: the high temperature case, Commun. Math. Phys., 166, 549-564 (1995) · Zbl 0811.60098 · doi:10.1007/BF02099887
[17] Costeniuc, M.; Ellis, RS; Touchette, H., Complete analysis of phase transitions and ensemble equivalence for the Curie-Weiss-Potts model, J. Math. Phys., 46, 063301 (2005) · Zbl 1110.82021 · doi:10.1063/1.1904507
[18] Crawford, N., Thermodynamics and universality for mean field quantum spin glasses, Commun. Math. Phys., 274, 821-839 (2007) · Zbl 1138.82003 · doi:10.1007/s00220-007-0263-x
[19] Dembo, A.; Zeitouni, O., Large-Deviations: Techniques and Applications, 2nd edn., corrected printing (2010), Berlin: Springer, Berlin · Zbl 1177.60035 · doi:10.1007/978-3-642-03311-7
[20] Deuschel, J-D; Stroock, DW, Large Deviations (1989), San Diego (CA): Academic Press, San Diego (CA) · Zbl 0705.60029
[21] Dorlas, TC, Statistical Mechanics: Fundamentals and Examples (1999), Bristol: Institute of Physics Publishing, Bristol · Zbl 0932.82001
[22] Dorlas, TC, Probabilistic derivation of a noncommutative version of Varadhan’s theorem, Math. Proc. R. Irish Acad., 109A, 1-18 (2009) · Zbl 1169.82005
[23] Duplantier, B., Comment on Parisi’s equation for the SK model for spin glasses, J. Phys. A, 14, 283-285 (1981) · doi:10.1088/0305-4470/14/1/027
[24] Edgar, GA, Measurability in a Banach space, Indiana Univ. Math. J., 26, 663-677 (1977) · Zbl 0361.46017 · doi:10.1512/iumj.1977.26.26053
[25] Fannes, M.; Spohn, H.; Verbeure, A., Equilibrium states for mean field models, J. Math. Phys., 21, 355-358 (1980) · Zbl 0445.46049 · doi:10.1063/1.524422
[26] Fedorov, Ya V.; Shender, EF, Quantum spin glasses in the Ising model with a transverse field, JETP Lett., 43, 681-684 (1986)
[27] Fekete, M., Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Mathematische Zeitschrift, 17, 228-249 (1923) · JFM 49.0047.01 · doi:10.1007/BF01504345
[28] Fischer, KH; Hertz, JA, Spin Glasses (1991), Cambridge: Cambridge University Press, Cambridge · doi:10.1017/CBO9780511628771
[29] Fröhlich, J.; Zegarlinski, B., Some comments on the Sherrington-Kirkpatrick model of spin glasses, Commun. Math. Phys., 112, 553-566 (1987) · doi:10.1007/BF01225372
[30] Gaveau, B.; Schulman, LS, Dirac equation path integral: Interpreting the Grassmann variables, Il Nuovo Cimento, 11D, 31-39 (1989) · doi:10.1007/BF02450232
[31] Goldschmidt, Y., Solvable model of the quantum spin glass in a transverse field, Phys. Rev. B, 41, 4858-4861 (1990) · doi:10.1103/PhysRevB.41.4858
[32] Goldschmidt, Y.; Lai, P-Y, Ising spin glass in a transverse field: Replica-symmetry-breaking solution, Phys. Rev. Lett., 64, 2467-2470 (1990) · Zbl 1050.82559 · doi:10.1103/PhysRevLett.64.2467
[33] Guerra, F., Sum rules for the free energy in mean field spin glass models, Fields Institute Commun., 30, 161-170 (2001) · Zbl 1009.82011
[34] Guerra, F., Broken replica symmetry bounds in the mean field spin glass model, Commun. Math. Phys., 233, 1-12 (2003) · Zbl 1013.82023 · doi:10.1007/s00220-002-0773-5
[35] Guerra, F.; Toninelli, FL, The thermodynamic limit in mean field spin glass models, Commun. Math. Phys., 230, 71-79 (2002) · Zbl 1004.82004 · doi:10.1007/s00220-002-0699-y
[36] Guerra, F.; Toninelli, FL, The infinite volume limit in generalized mean field disordered models, Markov Proc. Rel. Fields, 9, 195-207 (2003) · Zbl 1033.82009
[37] Huang, K., Statistical Mechanics (1987), New York: Wiley, New York · Zbl 1041.82500
[38] Ishii, H.; Yamamoto, T., Effect of a transverse field on the spin glass freezing in the Sherrington-Kirkpatrick model, J. Phys. C, 18, 6225-6237 (1985) · doi:10.1088/0022-3719/18/33/013
[39] Jensen, JLWV, Sur les fonctions convexes et les inégalitiés entre les valeurs moyennes, Acta Math., 30, 175-193 (1906) · JFM 37.0422.02 · doi:10.1007/BF02418571
[40] Johnson, GW; Lapidus, ML, The Feynman Integral and Feynman’s Operational Calculus (2000), Oxford: Clarendon, Oxford · Zbl 0952.46044
[41] Kac, M., A stochastic model related to the telegrapher’s equation, Rocky Mountain J. Math., 4, 497-509 (1974) · Zbl 0314.60052 · doi:10.1216/RMJ-1974-4-3-497
[42] Kallenberg, O., Foundations of Modern Probability (2002), New York: Springer, New York · Zbl 0996.60001 · doi:10.1007/978-1-4757-4015-8
[43] Kopeć, TK, A dynamic theory of transverse freezing in the Sherrington-Kirkpatrick Ising model, J. Phys. C, 21, 6053-6065 (1988) · doi:10.1088/0022-3719/21/36/006
[44] Kim, D-H; Kim, J-J, Infinite-range Ising glass with a transverse field under the static approximation, Phys. Rev. B, 66, 054432 (2002) · doi:10.1103/PhysRevB.66.054432
[45] Kingman, JFC, Poisson Processes (1993), Oxford: Clarendon, Oxford · Zbl 0771.60001
[46] Kolesnik, AD; Ratanov, N., Telegraph Processes and Option Pricing (2013), Heidelberg: Springer, Heidelberg · Zbl 1285.60001 · doi:10.1007/978-3-642-40526-6
[47] Last, G.; Penrose, M., Lectures on the Poisson Process (2018), Cambridge: Cambridge University Press, Cambridge · Zbl 1392.60004
[48] Manai, C.; Warzel, S., Phase diagram of the quantum random energy model, J. Stat. Phys., 180, 654-664 (2020) · Zbl 1447.82033 · doi:10.1007/s10955-020-02492-5
[49] Miller, J.; Huse, DA, Zero-temperature critical behavior of the infinite-range quantum Ising spin glass, Phys. Rev. Lett., 70, 3147-3150 (1993) · doi:10.1103/PhysRevLett.70.3147
[50] Mühlschlegel, B.; Arthurs, AM, Functional integrals and local many-body problems: localized moments and small particles, Functional Integration and its Application, 124-135 (1975), Oxford: Clarendon Press, Oxford
[51] Mukherjee, S.; Rajak, A.; Chakrabarti, BK, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing, Phys. Rev. E, 97, 022146 (2018) · doi:10.1103/PhysRevE.97.022146
[52] Mydosh, JA, Spin Glasses: An Experimental Introduction (1993), London: Taylor and Francis, London
[53] Newman, CM; Stein, DL, Nonrealistic behavior of mean-field spin glasses, Phys. Rev. Lett., 91, 197205 (2003) · doi:10.1103/PhysRevLett.91.197205
[54] Nishimori, H., Statistical Physics of Spin Glasses and Information Processing: An Introduction (2001), Oxford: Clarendon, Oxford · Zbl 1103.82002 · doi:10.1093/acprof:oso/9780198509417.001.0001
[55] Paley, REAC; Zygmund, A., On some series of functions, Proc. Camb. Phil. Soc., 28, 190-205 (1932) · JFM 58.1070.01 · doi:10.1017/S0305004100010860
[56] Panchenko, D., The Sherrington-Kirkpatrick Model (2013), New York: Springer, New York · Zbl 1266.82005 · doi:10.1007/978-1-4614-6289-7
[57] Parisi, G., The order parameter for spin glasses: a function on the interval 0-1, J. Phys. A, 13, 1101-1112 (1980) · doi:10.1088/0305-4470/13/3/042
[58] Parisi, G., A sequence of approximated solutions to the S-K model for spin glasses, J. Phys. A, 13, L115-L121 (1980) · doi:10.1088/0305-4470/13/4/009
[59] Parisi, G., The mean field theory of spin glasses: the heuristic replica approach and recent rigorous results, Lett. Math. Phys., 88, 255-269 (2009) · Zbl 1375.82053 · doi:10.1007/s11005-009-0317-4
[60] Pastur, LA; Shcherbina, MV, Absence of self-averaging of the order parameter in the Sherrington-Kirkpatrick model, J. Stat. Phys., 62, 1-19 (1991) · doi:10.1007/BF01020856
[61] Ray, P.; Chakrabarti, BK; Chakrabarti, A., Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations, Phys. Rev. B, 39, 11828-11832 (1989) · doi:10.1103/PhysRevB.39.11828
[62] Roepstorff, G., Path Integral Approach to Quantum Physics (1994), Berlin: Springer, Berlin · Zbl 0840.60098 · doi:10.1007/978-3-642-57886-1
[63] Sherrington, D.; Kirkpatrick, S., Solvable model of a spin-glass, Phys. Rev. Lett., 35, 1792-1796 (1975) · doi:10.1103/PhysRevLett.35.1792
[64] Simon, B., Functional Integration and Quantum Physics (2005), Providence (RI): American Mathematical Society, Providence (RI) · Zbl 1061.28010
[65] Simon, B., Trace Ideals and Their Applications (2005), Providence (RI): American Mathematical Society, Providence (RI) · Zbl 1074.47001
[66] Sommers, H-J, Theory of a Heisenberg spin glass, J. Magn. Magn. Mater., 22, 267-270 (1981) · doi:10.1016/0304-8853(81)90032-9
[67] Stratt, RM, Path-integral methods for treating quantal behavior in solids: mean-field theory and the effects of fluctuations, Phys. Rev. B, 33, 1921-1930 (1986) · doi:10.1103/PhysRevB.33.1921
[68] Suzuki, S.; Inoue, J-I; Chakrabarti, BK, Quantum Ising Phases and Transitions in Transverse Ising Models (2013), Berlin: Springer, Berlin · Zbl 1268.82001 · doi:10.1007/978-3-642-33039-1
[69] Takahashi, K., Quantum fluctuations in the transverse Ising spin glass model: a field theory of random quantum spin systems Phys, Rev. B, 76, 184422 (2007) · doi:10.1103/PhysRevB.76.184422
[70] Talagrand, M., The Sherrington-Kirkpatrick model: a challenge to mathematicians, Probab. Theory Relat. Fields, 110, 109-176 (1998) · Zbl 0909.60083 · doi:10.1007/s004400050147
[71] Talagrand, M., The Parisi formula, Ann. Math., 163, 221-263 (2006) · Zbl 1137.82010 · doi:10.4007/annals.2006.163.221
[72] Talagrand, M., Mean Field Models for Spin Glasses - Volume I: Basic Examples (2011), Berlin: Springer, Berlin · Zbl 1214.82002 · doi:10.1007/978-3-642-15202-3
[73] Talagrand, M., Mean Field Models for Spin Glasses - Volume II: Advanced Replica-Symmetry and Low Temperature (2011), Berlin: Springer, Berlin · Zbl 1232.82005 · doi:10.1007/978-3-642-15202-3
[74] Toland, JF, A duality principle for non-convex optimisation and the calculus of variations, Arch. Rational Mech. Anal., 71, 41-61 (1979) · Zbl 0411.49012 · doi:10.1007/BF00250669
[75] Usadel, KD; Schmitz, B., Quantum fluctuations in an Ising spin glass with transverse field, Solid State Commun., 64, 975-977 (1987) · doi:10.1016/0038-1098(87)90575-8
[76] Varadhan, SRS, Asymptotic probabilities and differential equations, Commun. Pure Appl. Math., 19, 261-286 (1966) · Zbl 0147.15503 · doi:10.1002/cpa.3160190303
[77] Wreszinski, WF; Bolina, O., A self-averaging “order parameter” for the Sherrington-Kirkpatrick spin glass model, J. Stat. Phys., 116, 1389-1404 (2004) · Zbl 1109.82015 · doi:10.1023/B:JOSS.0000041743.24497.63
[78] Yamamoto, T.; Ishii, H., A perturbation expansion for the Sherrington-Kirkpatrick model with a transverse field, J. Phys. C, 20, 6053-6060 (1987) · doi:10.1088/0022-3719/20/35/020
[79] Young, AP, Stability of the quantum Sherrington-Kirkpatrick spin glass model, Phys. Rev. E, 96, 032112 (2017) · doi:10.1103/PhysRevE.96.032112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.