×

Quantum dense coding properties between two spatially separated atoms in free space. (English) Zbl 1462.81051

Summary: Quantum dense coding properties between two identical and spatially separated atoms in free space with different initial states is investigated. It shows that dense coding capacity \(\chi\) experienced a sharp decline firstly and then gradually increased to be one steady value 1 with increasing \(\Gamma t\). The realization of dense coding capacity \(\chi\) is found to be strongly dependent on the initial states. It is worth noting that the initial pure state |\(ee \rangle\) is not useful for dense coding in this system, due to the dense coding capacity \(\chi\) is always less than 1(a valid dense coding capacity satisfies \(\chi > 1\)). Otherwise, for the initial entangled state and mixed state, one can obtain the valid dense coding capacity, the results show that one threshold value of \(t_c\) is exists, and when \(t < t_c\) the dense coding capacity is valid. Tuning the atomic distance between the two atoms slightly broaden the valid dense coding region and improve the value of \(t_c\). Decreasing the purity \(a\) of initial states not only broaden the region but also prolong the effective time where one can carry out the valid dense coding successfully.

MSC:

81P48 LOCC, teleportation, dense coding, remote state operations, distillation
68P30 Coding and information theory (compaction, compression, models of communication, encoding schemes, etc.) (aspects in computer science)
Full Text: DOI

References:

[1] Belavkin, V., Hirota, O., Hudson, R.: Quantum Communications and Measurement (2009)
[2] Hirota, O., Holevo, A.S., Caves, C.M.: Quantum Communication, Computing, and Measurement. Kluwer Academic Publishers, Dordrecht (1997) · Zbl 0894.00057
[3] Kumar, P., D’ariano, G.M., Hirota, O.: Quantum Communication, Computing, and Measurement 2. Kluwer Academic Publishers, Dordrecht (2001)
[4] Bouwmeester, D., Ekert, A.k., Zeilinger, A.: The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation. Springer, Berlin (2000) · Zbl 1008.81504
[5] Alber, G.; Beth, T.; Horodecki, P.; Horodecki, R.; Horodecki, M.; Weinfurther, H.; Werner, R.; Zeilinger, A., Quantum Information (2002), Berlin: Springer, Berlin
[6] Nielsen, MA; Chuang, IL, Quantum Computation and Quantum Information (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 1049.81015
[7] Bennett, CH; Wiesner, SJ, Phys. Rev. Lett., 69, 2881 (1992) · Zbl 0968.81506 · doi:10.1103/PhysRevLett.69.2881
[8] Mattle, K.; Weinfurter, H.; Kwiat, PG; Zeilinger, A., Phys. Rev. Lett., 76, 4656 (1996) · doi:10.1103/PhysRevLett.76.4656
[9] Xu, HY; Yang, GH, Int. J. Theor. Phys., 56, 2803 (2017) · Zbl 1379.81033 · doi:10.1007/s10773-017-3445-0
[10] Bareno, A.; Ekert, A., J. Mod. Opt., 42, 1253 (1995) · doi:10.1080/09500349514551091
[11] Zhao, X.; Li, YQ; Cheng, LY; Yang, GH, Int. J. Theor. Phys., 58, 493 (2019) · Zbl 1412.81116 · doi:10.1007/s10773-018-3949-2
[12] Braunstein, SL; Kimble, HJ, Phys. Rev. A, 61, 042302 (2000) · doi:10.1103/PhysRevA.61.042302
[13] Bose, S.; Plenio, MB; Vedral, V., J. Mod. Opt., 47, 291 (2000) · doi:10.1080/09500340008244043
[14] Holevo, AS, Probl. Inf. Transm., 9, 3, 177-183 (1973)
[15] Holevo, AS, Probl. Inf. Transm., 15, 4, 247-253 (1979) · Zbl 0449.94010
[16] Holevo, AS, IEEE Trans. Inf. Theory, 44, 269 (1998) · Zbl 0897.94008 · doi:10.1109/18.651037
[17] Schumacher, B.; Westmoreland, MD, Phys. Rev. A, 56, 131 (1997) · doi:10.1103/PhysRevA.56.131
[18] Plenio, MB, Phys. Rev. A, 59, 2468 (1999) · doi:10.1103/PhysRevA.59.2468
[19] Ficek, Z.; Tanas, R., Phys. Rep., 372, 369 (2002) · Zbl 0999.81009 · doi:10.1016/S0370-1573(02)00368-X
[20] Benatti, F., Phys. Rev. Lett., 91, 070402 (2003) · doi:10.1103/PhysRevLett.91.070402
[21] Kiffner, M.; Evers, J.; Keitel, CH, Phys. Rev. A, 75, 032313 (2007) · doi:10.1103/PhysRevA.75.032313
[22] Agarwal, GS; Patnaik, AK, Phys. Rev. A, 63, 043805 (2001) · doi:10.1103/PhysRevA.63.043805
[23] Evers, J.; Kiffner, M.; Macovei, M.; Keitel, CH, Phys. Rev. A, 73, 023804 (2006) · doi:10.1103/PhysRevA.73.023804
[24] Macovei, M.; Ficek, Z.; Keitel, CH, Phys. Rev. A, 73, 063821 (2006) · doi:10.1103/PhysRevA.73.063821
[25] Mandel, L.; Wolf, E., Optical Coherence and Quantum Optics (1995), Cambridge: Cambridge University Press, Cambridge
[26] Ficek, Z.; Swain, S., Quantum Interference and Coherence (2005), New York: Springer, New York · Zbl 1055.81660
[27] Agarwal, G.S.: Quantum statistical theories of spontaneous emission and their relation to other approaches. In: Spring Tracts in Modern Physics: Quantum Optics. Springer-Verlag, Berlin (1974)
[28] Yu, T.; Eberly, JH, Quantum Inf. Comput., 7, 459 (2007) · Zbl 1152.81830
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.