×

A discontinuous variational principle implying a non-equilibrium dispersion relation for damped acoustic waves. (English) Zbl 1462.76165

Summary: The discontinuous Lagrangian approach, allowing for a variational description of irreversible phenomena in continuum theory such as viscosity and thermal conductivity, is utilised for the analysis of damped acoustic waves. Starting from a Lagrangian for general viscous flow theory, by linearisation of the resulting Euler-Lagrange equations and performing an ensemble average, a single wave equation for the density perturbations is obtained, being the one resulting from classical Navier-Stokes theory with an additional term due to thermodynamic non-equilibrium. By considering harmonic waves, the respective non-classical dispersion relation and its implications are analysed.

MSC:

76Q05 Hydro- and aero-acoustics
76M30 Variational methods applied to problems in fluid mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow
Full Text: DOI

References:

[1] Olsson, P., Transport Phenomena in Newtonian Fluids - A Concise Primer, SpringerBriefs in Applied Sciences and Technology (2013), Springer International Publishing
[2] Belevich, M., Classical Fluid Mechanics (2017), Bentham Science Publishers, URL https://books.google.de/books?id=5QI5DwAAQBAJ · Zbl 1080.76004
[3] Landau, L. D.; Lifschitz, E. M., Fluid Mechanics (1987), Pergamon · Zbl 0655.76001
[4] Jordan, P. M., A survey of weakly-nonlinear acoustic models: 1910-2009, Mech. Res. Commun., 73, 127-139 (2016)
[5] Marner, F.; Scholle, M.; Herrmann, D.; Gaskell, P. H., Competing Lagrangians for incompressible and compressible viscous flow, R. Soc. Open Sci., 6, 1, Article 181595 pp. (2019)
[6] Makarov, S.; Ochmann, M., Nonlinear and thermoviscous phenomena in acoustics, part I, Acta Acus. United Acust., 82, 4, 579-606 (1996) · Zbl 0887.76067
[7] Clebsch, A., Ueber die Integration der hydrodynamischen Gleichungen, J. Reine Angew. Math., 56, 1-10 (1859) · ERAM 056.1468cj
[8] Lamb, H., Hydrodynamics (1974), Cambridge University Press · JFM 26.0868.02
[9] Panton, R. L., Incompressible Flow (1996), John Wiley & Sons, Inc.
[10] Calkin, M. G., An action principle for magnetohydrodynamics, Can. J. Phys., 41, 12, 2241-2251 (1963) · Zbl 1371.76161
[11] Wagner, H. J., Das Inverse Problem der Lagrangeschen Feldtheorie in Hydrodynamik, Plasmadynamik und hydrodynamischem Bild der Quantenmechanik (1997), University of Paderborn
[12] Seliger, R.; Witham, G. B., Variational principles in continuum mechanics, Proc. R. Soc. A, 305, 1480, 1-25 (1968) · Zbl 0198.57601
[13] van Dantzig, D., On the phenomenological thermodynamics of moving matter, Physica, 6, 7, 673-704 (1939) · Zbl 0022.09503
[14] Green, A. E.; Naghdi, P. M., A new thermoviscous theory for fluids, J. Non-Newton. Fluid Mech., 56, 3, 289-306 (1995)
[15] Jordan, P. M.; Straughan, B., Acoustic acceleration waves in homentropic Green and Naghdi gases, Proc. R. Soc. A, 462, 2076, 3601-3611 (2006) · Zbl 1149.76663
[16] Zuckerwar, A. J.; Ash, R. L., Variational approach to the volume viscosity of fluids, Phys. Fluids, 18, 4, Article 047101 pp. (2006) · Zbl 1185.76867
[17] Zuckerwar, A. J.; Ash, R. L., Volume viscosity in fluids with multiple dissipative processes, Phys. Fluids, 21, 3, Article 033105 pp. (2009) · Zbl 1183.76610
[18] Scholle, M., Construction of Lagrangians in continuum theories, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460, 3241-3260 (2004) · Zbl 1092.76012
[19] Scholle, M.; Marner, F., A non-conventional discontinuous Lagrangian for viscous flow, R. Soc. Open Sci., 4, 2 (2017) · Zbl 1360.76079
[20] Madelung, E., Quantentheorie in hydrodynamischer Form, Z. Phys., 40, 3-4, 322-326 (1927) · JFM 52.0969.06
[21] Anthony, K.-H., Unification of continuum-mechanics and thermodynamics by means of Lagrange-formalism - present status of the theory and presumable applications, Arch. Mech., 41, 4, 511-534 (1989) · Zbl 0724.73012
[22] Anthony, K.-H., Phenomenological thermodynamics of irreversible processes within Lagrange formalism, Acta Phys. Hung., 67, 3-4, 321-340 (1990)
[23] Anthony, K.-H., Hamilton’s action principle and thermodynamics of irreversible processes – a unifying procedure for reversible and irreversible processes, J. Non-Newton. Fluid Mech., 96, 1-2, 291-339 (2001) · Zbl 1060.82506
[24] Cipriano, F.; Cruzeiro, A. B., Navier-Stokes equation and diffusions on the group of homeomorphisms of the torus, Comm. Math. Phys., 275, 1, 255-269 (2007) · Zbl 1120.76013
[25] Arnaudon, M.; Cruzeiro, A. B.; Galamba, N., Lagrangian Navier-Stokes flows: a stochastic model, J. Phys. A, 44, 17, Article 175501 pp. (2011) · Zbl 1429.76081
[26] Arnaudon, M.; Cruzeiro, A. B., Lagrangian Navier-Stokes diffusions on manifolds: variational principle and stability, Bull. Sci. Math., 136, 8, 857-881 (2012) · Zbl 1254.35174
[27] Arnaudon, M.; Cruzeiro, A. B., Stochastic Lagrangian flows and the Navier-Stokes equations, (Stochastic Analysis: A Series of Lectures (2015), Springer), 55-75 · Zbl 1333.60005
[28] Arnaudon, M.; Chen, X.; Cruzeiro, A. B., Stochastic Euler-Poincaré reduction, J. Math. Phys., 55, 8, Article 081507 pp. (2014) · Zbl 1307.37027
[29] Chen, X.; Cruzeiro, A. B.; Ratiu, T. S., Constrained and stochastic variational principles for dissipative equations with advected quantities (2015), arXiv preprint arXiv:1506.05024
[30] Ohkitani, K.; Constantin, P., Numerical study on the Eulerian-Lagrangian analysis of Navier-Stokes turbulence, Phys. Fluids, 20, 7, Article 075102 pp. (2008) · Zbl 1182.76565
[31] Cartes, C.; Bustamante, M. D.; Brachet, M. E., Generalized Eulerian-Lagrangian description of Navier-Stokes dynamics, Phys. Fluids, 19, 7, Article 077101 pp. (2007) · Zbl 1182.76122
[32] Ohkitani, K., Study of the 3D euler equations using Clebsch potentials: dual mechanisms for geometric depletion, Nonlinearity, 31, 2, R25 (2018) · Zbl 1391.76058
[33] Lin, C. C., Hydrodynamics of Helium II, (Proc. Int. School of Physics “Enrico Fermi”, Vol. 21 (1963), Academic Press: Academic Press New York)
[34] Scholle, M., Hydrodynamik im Lagrangeformalismus: Untersuchungen zur Wärmeleitung in idealen Flüssigkeiten (1994), University of Paderborn
[35] Scholle, M.; Anthony, K.-H., Lagrange formalism and complex fields in hydro- and thermodynamics, Zesz. Nauk. Politech. Swietokrzysk. Mech., 59, 109-121 (1995)
[36] Greiner, W., Quantenmechanik: Einführung, Theoretische Physik (2005), Deutsch, URL https://books.google.de/books?id=Rw0qvgAACAAJ
[37] Schmutzer, E., Symmetrien und Erhaltungssätze der Physik, Reihe Mathematik und Physik, Vol. 75, 165 S (1972), Akad.-Verl. [u.a.]: Akad.-Verl. [u.a.] Berlin · Zbl 0241.49026
[38] Corson, E. M., Introduction to tensors, spinors and relativistic wave-equations: relation structure (1953), Hafner: Hafner New York, NY, URL https://cds.cern.ch/record/104738 · Zbl 0053.32507
[39] Noether, E., Invariante Variationsprobleme, Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen, Math.-Phys. Kl., 235-257 (1918) · JFM 46.0770.01
[40] Azirhi, A., Thermodynamik und Quantenfeldtheorie - Ein quantenfeldtheoretisches Modell der Wärmeleitung (1993), University of Paderborn
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.