×

Elliptical instability of the Moore-Saffman model for a trailing wingtip vortex. (English) Zbl 1462.76069

Summary: In this paper, we investigate the elliptical instability exhibited by two counter-rotating trailing vortices. This type of instability can be viewed as a resonance between two normal modes of a vortex and an external strain field. Recent numerical investigations have extended earlier results that ignored axial flow to include models with a simple wake-like axial flow such as the similarity solution found by G. K. Batchelor [J. Fluid Mech. 20, 645–658 (1964; Zbl 0151.40401)]. We present herein growth rates of elliptical instability for a family of velocity profiles found by D. W. Moore and P. G. Saffman [Proc. R. Soc. Lond., Ser. A 333, 491–508 (1973; Zbl 0263.76015)]. These profiles have a parameter \(n\) that depends on the wing loading. As a result, unlike the Batchelor vortex, they are capable of modelling both the jet-like and the wake-like axial flow present in a trailing vortex at short and intermediate distances behind a wingtip. Direct numerical simulations of the linearized Navier-Stokes equations are performed using an efficient spectral method in cylindrical coordinates developed by T. Matsushima and P. S. Marcus [J. Comput. Phys. 137, No. 2, 321–345 (1997; Zbl 0887.65103)]. We compare our results with those for the Batchelor vortex, whose velocity profiles are closely approximated as the wing loading parameter \(n\) approaches 1. An important conclusion of our investigation is that the stability characteristics vary considerably with \(n\) and \(W_{0}\), a parameter measuring the strength of the mean axial velocity component. In the case of an elliptically loaded wing (\(n=0.50\)), we find that the instability growth rates are up to 50 % greater than those for the Batchelor vortex. Our results demonstrate the significant effect of the distribution and intensity of the axial flow on the elliptical instability of a trailing vortex.

MSC:

76E07 Rotation in hydrodynamic stability
76D17 Viscous vortex flows
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions, (1972), Dover · Zbl 0543.33001
[2] Anderson, E. A.; Lawton, T. A., Correlation between vortex strength and axial velocity in a trailing vortex, J. Aircraft, 40, 699-704, (2003) · doi:10.2514/2.3148
[3] Ash, R. L. & Khorrami, M. R.1995Vortex stability. In Fluid Vortices (ed. Green, S. I.), pp. 317-372. Kluwer. doi:10.1007/978-94-011-0249-0_8
[4] Baker, G. R.; Barker, S. J.; Bofah, K. K.; Saffman, P. G., Laser anemometer measurements of trailing vortices in water, J. Fluid Mech., 65, 325-336, (1974) · doi:10.1017/S0022112074001418
[5] Batchelor, G. K., Axial flow in trailing line vortices, J. Fluid Mech., 20, 645-658, (1964) · Zbl 0151.40401 · doi:10.1017/S0022112064001446
[6] Bayly, B. J., Three-dimensional instability of elliptical flow, Phys. Rev. Lett., 57, 2160-2163, (1986) · doi:10.1103/PhysRevLett.57.2160
[7] Boyd, J. P., Chebyshev and Fourier Spectral Methods, (2000), Dover
[8] Bristol, R. L.; Ortega, J. M.; Marcus, P. S.; Savaş, Ö., On cooperative instabilities of parallel vortex pairs, J. Fluid Mech., 517, 331-358, (2004) · Zbl 1131.76323 · doi:10.1017/S0022112004001016
[9] Brown, A. P.2014 The alleviation of wake vortex encounter loads, a study of flight research data. AIAA Paper 2014-2337.
[10] Cain, A. B.; Ferziger, J. H.; Reynolds, W. C., Discrete orthogonal function expansions for non-uniform grids using the fast Fourier transform, J. Comput. Phys., 56, 272-286, (1984) · Zbl 0557.65097 · doi:10.1016/0021-9991(84)90096-2
[11] Chow, J. S.; Zilliac, G. G.; Bradshaw, P., Mean and turbulence measurements in the near field of a wing-tip vortex, AIAA J., 35, 1561-1567, (1997) · doi:10.2514/2.1
[12] Devenport, W. J.; Rife, M. C.; Liapis, S. I.; Follin, G. J., The structure and development of a wingtip vortex, J. Fluid Mech., 312, 67-106, (1996) · doi:10.1017/S0022112096001929
[13] Eloy, C.; Le Dizès, S., Stability of the Rankine vortex in a multipolar strain field, Phys. Fluids, 13, 660-676, (2001) · Zbl 1184.76148 · doi:10.1063/1.1345716
[14] Fabre, D.; Jacquin, L., Short-wave cooperative instabilities in representative aircraft vortices, Phys. Fluids, 16, 1366-1378, (2004) · Zbl 1186.76162 · doi:10.1063/1.1686951
[15] Fabre, D.; Jacquin, L., Viscous instabilities in trailing vortices at large swirl numbers, J. Fluid Mech., 500, 239-262, (2004) · Zbl 1059.76021 · doi:10.1017/S0022112003007353
[16] Fabre, D.; Sipp, D.; Jacquin, L., Kelvin waves and the singular modes of the Lamb-Oseen vortex, J. Fluid Mech., 551, 235-274, (2006) · Zbl 1119.76020 · doi:10.1017/S0022112005008463
[17] Faddy, J. M.2005 Flow structure in a model of aircraft trailing vortices. PhD thesis, California Institute of Technology. · Zbl 1187.76147
[18] Faddy, J. M.; Pullin, D. I., Flow structure in a model of aircraft trailing vortices, Phys. Fluids, 17, (2005) · Zbl 1187.76147 · doi:10.1063/1.1955536
[19] Feys, J.; Maslowe, S. A., Linear stability of the Moore-Saffman model for a trailing wingtip vortex, Phys. Fluids, 26, (2014) · Zbl 1321.76024 · doi:10.1063/1.4865838
[20] Fukumoto, Y., The three-dimensional instability of a strained vortex tube revisited, J. Fluid Mech., 493, 287-318, (2003) · Zbl 1275.76116 · doi:10.1017/S0022112003006025
[21] Gottlieb, D.; Orszag, S. A., Numerical Analysis of Spectral Methods: Theory and Applications, (1977), SIAM · Zbl 0412.65058 · doi:10.1137/1.9781611970425
[22] Heaton, C. J., Centre modes in inviscid swirling flows and their application to the stability of the Batchelor vortex, J. Fluid Mech., 576, 325-348, (2007) · Zbl 1124.76009 · doi:10.1017/S0022112006004447
[23] Heaton, C. J., Optimal growth of the Batchelor vortex viscous modes, J. Fluid Mech., 592, 495-505, (2007) · Zbl 1128.76018 · doi:10.1017/S0022112007008634
[24] Jiménez, J.; Moffatt, H. K.; Vasco, C., The structure of the vortices in freely decaying two-dimensional turbulence, J. Fluid Mech., 313, 209-222, (1996) · Zbl 0863.76028 · doi:10.1017/S0022112096002182
[25] Karniadakis, G. E.; Israeli, M.; Orszag, S. A., High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 97, 414-443, (1991) · Zbl 0738.76050 · doi:10.1016/0021-9991(91)90007-8
[26] Kerswell, R. R., Elliptical instability, Annu. Rev. Fluid Mech., 34, 83-113, (2002) · Zbl 1047.76022 · doi:10.1146/annurev.fluid.34.081701.171829
[27] Khorrami, M. R., On the viscous modes of instability of a trailing line vortex, J. Fluid Mech., 225, 197-212, (1991) · Zbl 0721.76032 · doi:10.1017/S0022112091002021
[28] Lacaze, L.; Birbaud, A.-L.; Le Dizès, S., Elliptical instability in a Rankine vortex with axial flow, Phys. Fluids, 17, (2005) · Zbl 1187.76291 · doi:10.1063/1.1814987
[29] Lacaze, L.; Ryan, K.; Le Dizès, S., Elliptical instability in a strained Batchelor vortex, J. Fluid Mech., 577, 341-361, (2007) · Zbl 1119.76032 · doi:10.1017/S0022112007004879
[30] Landman, M. J.; Saffman, P. G., The three-dimensional instability of strained vortices in a viscous fluid, Phys. Fluids, 30, 2339-2342, (1987) · doi:10.1063/1.866124
[31] Le Dizès, S., Viscous critical-layer analysis of vortex normal modes, Stud. Appl. Maths, 112, 315-332, (2004) · Zbl 1141.76373 · doi:10.1111/j.0022-2526.2004.01514.x
[32] Le Dizès, S.; Laporte, F., Theoretical predictions for the elliptical instability in a two-vortex flow, J. Fluid Mech., 471, 169-201, (2002) · Zbl 1042.76031
[33] Lessen, M.; Singh, P. J.; Paillet, F., The stability of a trailing line vortex. Part 1. Inviscid theory, J. Fluid Mech., 63, 753-763, (1974) · Zbl 0277.76041 · doi:10.1017/S0022112074002175
[34] Mao, X.2010 Vortex instability and transient growth. PhD thesis, Imperial College London.
[35] Matsushima, T.; Marcus, P. S., A spectral method for unbounded domains, J. Comput. Phys., 53, 321-345, (1997) · Zbl 0887.65103 · doi:10.1006/jcph.1997.5804
[36] Mayer, E. W.; Powell, K. G., Viscous and inviscid instabilities of a trailing vortex, J. Fluid Mech., 245, 91-114, (1992) · Zbl 0825.76250 · doi:10.1017/S0022112092000363
[37] Moore, D. W.; Saffman, P. G., Axial flow in laminar trailing vortices, Proc. R. Soc. Lond. A, 333, 491-508, (1973) · Zbl 0263.76015 · doi:10.1098/rspa.1973.0075
[38] Moore, D. W.; Saffman, P. G., The instability of a straight vortex filament in a strain field, Proc. R. Soc. Lond. A, 346, 413-425, (1975) · Zbl 0326.76046 · doi:10.1098/rspa.1975.0183
[39] Nomura, K. K.; Tsutsui, H.; Mahoney, D.; Rottman, J. W., Short-wavelength instability and decay of a vortex pair in a stratified fluid, J. Fluid Mech., 553, 283-322, (2006) · Zbl 1134.76350 · doi:10.1017/S0022112006008883
[40] Phillips, W. R. C., The turbulent trailing vortex during roll-up, J. Fluid Mech., 105, 451-467, (1981) · Zbl 0463.76012 · doi:10.1017/S0022112081003285
[41] Pierrehumbert, R. T., Universal short-wave instability of two-dimensional eddies in an inviscid fluid, Phys. Rev. Lett., 57, 2157-2160, (1986) · doi:10.1103/PhysRevLett.57.2157
[42] Del Pino, C.; Parras, L.; Felli, M.; Fernandez-Feria, R., Structure of trailing vortices: comparison between particle image velocimetry measurements and theoretical models, Phys. Fluids, 23, (2011) · doi:10.1063/1.3537791
[43] Roy, C.; Leweke, T.; Thompson, M. C.; Hourigan, K., Experiments on the elliptic instability in vortex pairs with axial core flow, J. Fluid Mech., 677, 383-416, (2011) · Zbl 1241.76046 · doi:10.1017/jfm.2011.91
[44] Roy, C.; Schaeffer, N.; Le Dizès, S.; Thompson, M., Stability of a pair of co-rotating vortices with axial flow, Phys. Fluids, 20, (2008) · Zbl 1182.76645 · doi:10.1063/1.2967935
[45] Saffman, P. G., Vortex Dynamics, (1992), Cambridge University Press · Zbl 0777.76004
[46] Sakai, T.; Redekopp, L. G., An application of one-sided Jacobi polynomials for spectral modeling of vector fields in polar coordinates, J. Comput. Phys., 228, 7069-7085, (2009) · Zbl 1175.65120 · doi:10.1016/j.jcp.2009.06.017
[47] Sipp, D.; Jacquin, L., Widnall instabilities in vortex pairs, Phys. Fluids, 15, 7, 1861-1874, (2003) · Zbl 1186.76485 · doi:10.1063/1.1575752
[48] Spalart, P. R., Airplane trailing vortices, Annu. Rev. Fluid Mech., 30, 107-138, (1998) · Zbl 1398.76087 · doi:10.1146/annurev.fluid.30.1.107
[49] Tsai, C.-Y.; Widnall, S. E., The stability of short waves on a straight vortex filament in a weak externally imposed strain field, J. Fluid Mech., 73, 721-733, (1976) · Zbl 0326.76045 · doi:10.1017/S0022112076001584
[50] Waleffe, F., On the three-dimensional instability of strained vortices, Phys. Fluids A, 2, 76-80, (1990) · Zbl 0696.76052 · doi:10.1063/1.857682
[51] Widnall, S. E.; Bliss, D. B.; Tsai, C.-Y., The instability of short waves on a vortex ring, J. Fluid Mech., 66, 35-47, (1974) · Zbl 0289.76027 · doi:10.1017/S0022112074000048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.