×

Upwind discontinuous Galerkin space discretization and locally implicit time integration for linear Maxwell’s equations. (English) Zbl 1462.65144

Authors’ abstract: This paper is dedicated to the full discretization of linear Maxwell’s equations, where the space discretization is carried out with a discontinuous Galerkin (dG) method on a locally refined spatial grid. For such problems, explicit time integrators are inefficient due to their strict CFL condition stemming from the fine grid elements. In the last few years, this issue of so-called grid-induced stiffness was successfully tackled with locally implicit time integrators. So far, these methods are limited to unstabilized (central fluxes) dG methods. However, stabilized (upwind fluxes) dG schemes provide many benefits and thus are a popular choice in applications. In this paper, we construct a new variant of a locally implicit time integrator using an upwind fluxes dG discretization on the coarse part of the grid. The construction is based on a rigorous error analysis which shows that the stabilization operators have to be split differently than the Maxwell operator. Moreover, our earlier analysis of a central fluxes locally implicit method based on semigroup theory [M. Hochbruck and A. Sturm, SIAM J. Numer. Anal. 54, No. 5, 3167–3191 (2016; Zbl 1457.65111)] applies but does not yield optimal convergence rates. In this paper, we rigorously prove the stability and provide error bounds of the new method with optimal rates in space and time by means of an energy technique for a suitably defined modified error.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65J10 Numerical solutions to equations with linear operators
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
78A25 Electromagnetic theory (general)
35Q61 Maxwell equations

Citations:

Zbl 1457.65111

References:

[1] Almquist, Martin; Mehlin, Michaela, Multilevel local time-stepping methods of Runge-Kutta-type for wave equations, SIAM J. Sci. Comput., 39, 5, A2020-A2048 (2017) · Zbl 1373.65069 · doi:10.1137/16M1084407
[2] AlvACBG14 J. Alvarez, L.D. Angulo, M.R. Cabello, A. Rubio Bretones, and S.G. Garcia, An analysis of the leap-frog discontinuous Galerkin method for Maxwell’s equations, Microwave Theory and Techniques, IEEE Transactions on 62 (2014), no. 2, 197-207.
[3] BusKN11 K. Busch, M. K\"onig, and J. Niegemann, Discontinuous Galerkin methods in nanophotonics, Laser & Photonics Reviews 5 (2011), no. 6, 773-809.
[4] Demirel, Abdullah; Niegemann, Jens; Busch, Kurt; Hochbruck, Marlis, Efficient multiple time-stepping algorithms of higher order, J. Comput. Phys., 285, 133-148 (2015) · Zbl 1351.78053 · doi:10.1016/j.jcp.2015.01.018
[5] Descombes, St\'ephane; Lanteri, St\'ephane; Moya, Ludovic, Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell’s equations, J. Sci. Comput., 56, 1, 190-218 (2013) · Zbl 1266.78030 · doi:10.1007/s10915-012-9669-5
[6] DesLM16 S. Descombes, S. Lanteri, and L. Moya, Locally implicit discontinuous Galerkin time domain method for electromagnetic wave propagation in dispersive media applied to numerical dosimetry in biological tissues, SIAM J. Sci. Comput. 38 (2016), no. 5, A2611-A2633. · Zbl 1351.35208
[7] Descombes, St\'ephane; Lanteri, St\'ephane; Moya, Ludovic, Temporal convergence analysis of a locally implicit discontinuous Galerkin time domain method for electromagnetic wave propagation in dispersive media, J. Comput. Appl. Math., 316, 122-132 (2017) · Zbl 1375.78016 · doi:10.1016/j.cam.2016.09.038
[8] Di Pietro, Daniele Antonio; Ern, Alexandre, Mathematical Aspects of Discontinuous Galerkin Methods, Math\'ematiques & Applications (Berlin) [Mathematics & Applications] 69, xviii+384 pp. (2012), Springer, Heidelberg · Zbl 1231.65209 · doi:10.1007/978-3-642-22980-0
[9] Diaz, Julien; Grote, Marcus J., Energy conserving explicit local time stepping for second-order wave equations, SIAM J. Sci. Comput., 31, 3, 1985-2014 (2009) · Zbl 1195.65131 · doi:10.1137/070709414
[10] Diaz, Julien; Grote, Marcus J., Multi-level explicit local time-stepping methods for second-order wave equations, Comput. Methods Appl. Mech. Engrg., 291, 240-265 (2015) · Zbl 1425.65109 · doi:10.1016/j.cma.2015.03.027
[11] DieBN10 R. Diehl, K. Busch, and J. Niegemann, Comparison of low-storage Runge-Kutta schemes for discontinuous Galerkin time-domain simulations of Maxwell’s equations, J. Comput. Theor. Nanosci. 7 (2010), no. 8, 1572-1580.
[12] Dolean, Victorita; Fahs, Hassan; Fezoui, Loula; Lanteri, St\'ephane, Locally implicit discontinuous Galerkin method for time domain electromagnetics, J. Comput. Phys., 229, 2, 512-526 (2010) · Zbl 1213.78037 · doi:10.1016/j.jcp.2009.09.038
[13] DumKT07 M. Dumbser, M. K\"aser, and E. F. Toro, An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes – V. Local time stepping and p-adaptivity, Geophys. J. Int. 171 (2007), no. 2, 695-717.
[14] Emm99 E. Emmrich, Discrete versions of Gronwall’s lemma and their application to the numerical analysis of parabolic problems, Preprint no. 637, Fachbereich Mathematik, TU Berlin, 1999.
[15] Grote, Marcus J.; Mehlin, Michaela; Mitkova, Teodora, Runge-Kutta-based explicit local time-stepping methods for wave propagation, SIAM J. Sci. Comput., 37, 2, A747-A775 (2015) · Zbl 1320.65140 · doi:10.1137/140958293
[16] Diaz, Julien; Grote, Marcus J., Energy conserving explicit local time stepping for second-order wave equations, SIAM J. Sci. Comput., 31, 3, 1985-2014 (2009) · Zbl 1195.65131 · doi:10.1137/070709414
[17] Grote, Marcus J.; Mitkova, Teodora, Explicit local time-stepping methods for Maxwell’s equations, J. Comput. Appl. Math., 234, 12, 3283-3302 (2010) · Zbl 1210.78026 · doi:10.1016/j.cam.2010.04.028
[18] Grote, Marcus J.; Mitkova, Teodora, High-order explicit local time-stepping methods for damped wave equations, J. Comput. Appl. Math., 239, 270-289 (2013) · Zbl 1255.65174 · doi:10.1016/j.cam.2012.09.046
[19] Hesthaven, J. S.; Warburton, T., Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations, J. Comput. Phys., 181, 1, 186-221 (2002) · Zbl 1014.78016 · doi:10.1006/jcph.2002.7118
[20] Hesthaven, Jan S.; Warburton, Tim, Nodal Discontinuous Galerkin Methods, Texts in Applied Mathematics 54, xiv+500 pp. (2008), Springer, New York · Zbl 1134.65068 · doi:10.1007/978-0-387-72067-8
[21] Hochbruck, Marlis; Ostermann, Alexander, Exponential multistep methods of Adams-type, BIT, 51, 4, 889-908 (2011) · Zbl 1237.65071 · doi:10.1007/s10543-011-0332-6
[22] Hochbruck, Marlis; Pa\v zur, Tomislav, Implicit Runge-Kutta methods and discontinuous Galerkin discretizations for linear Maxwell’s equations, SIAM J. Numer. Anal., 53, 1, 485-507 (2015) · Zbl 1312.65161 · doi:10.1137/130944114
[23] Hochbruck, Marlis; Pa\v zur, Tomislav; Schulz, Andreas; Thawinan, Ekkachai; Wieners, Christian, Efficient time integration for discontinuous Galerkin approximations of linear wave equations, ZAMM Z. Angew. Math. Mech., 95, 3, 237-259 (2015) · Zbl 1322.65095 · doi:10.1002/zamm.201300306
[24] Hochbruck, Marlis; Sturm, Andreas, Error analysis of a second-order locally implicit method for linear Maxwell’s equations, SIAM J. Numer. Anal., 54, 5, 3167-3191 (2016) · Zbl 1457.65111 · doi:10.1137/15M1038037
[25] Monk, Peter, Finite Element Methods for Maxwell’s Equations, Numerical Mathematics and Scientific Computation, xiv+450 pp. (2003), Oxford University Press, New York · Zbl 1024.78009 · doi:10.1093/acprof:oso/9780198508885.001.0001
[26] Montseny, E.; Pernet, S.; Ferri\'eres, X.; Cohen, G., Dissipative terms and local time-stepping improvements in a spatial high order discontinuous Galerkin scheme for the time-domain Maxwell’s equations, J. Comput. Phys., 227, 14, 6795-6820 (2008) · Zbl 1144.78330 · doi:10.1016/j.jcp.2008.03.032
[27] Moya, Ludovic, Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations, ESAIM Math. Model. Numer. Anal., 46, 5, 1225-1246 (2012) · Zbl 1277.78036 · doi:10.1051/m2an/2012002
[28] M\"uller, Fabian; Schwab, Christoph, Finite elements with mesh refinement for elastic wave propagation in polygons, Math. Methods Appl. Sci., 39, 17, 5027-5042 (2016) · Zbl 1457.65130 · doi:10.1002/mma.3355
[29] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44, viii+279 pp. (1983), Springer-Verlag, New York · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[30] Piperno, Serge, Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems, M2AN Math. Model. Numer. Anal., 40, 5, 815-841 (2007) (2006) · Zbl 1121.78014 · doi:10.1051/m2an:2006035
[31] Stu17 A. Sturm, Locally implicit time integration for linear Maxwell’s equations, Ph.D. dissertation, Karlsruhe Institute of Technology, 2017.
[32] Verwer, J. G., Component splitting for semi-discrete Maxwell equations, BIT, 51, 2, 427-445 (2011) · Zbl 1221.65247 · doi:10.1007/s10543-010-0296-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.