×

Delta operators, power series distributions and recursions for compound sums. (English) Zbl 1462.62088

Summary: This paper uses some basic elements of the finite operator calculus to develop a new recursive method for calculating the probability distribution of a compound sum. The counting random variable here has a power series distribution of convolution type, which allows us to cover and extend a large number of classical counting distributions. This new approach is introduced in an actuarial framework and leads us to generalize the famous Panjer algorithm whose applications are numerous in collective, operational and credit risk models.

MSC:

62E10 Characterization and structure theory of statistical distributions
62E15 Exact distribution theory in statistics
60E05 Probability distributions: general theory
47N30 Applications of operator theory in probability theory and statistics
62P20 Applications of statistics to economics
Full Text: DOI

References:

[1] Ambagaspitiya, R. S., A family of discrete distributions, Insur. Math. Econ., 16, 107-127 (1995) · Zbl 0837.62016
[2] Ambagaspitiya, R. S.; Balakrishnan, N., On the compound generalized Poisson distributions, ASTIN Bull., 24, 255-263 (1994)
[3] Castellares, F.; Ferrari, S. L.P.; Lemonte, A. J., On the Bell distribution and its associated regression model for count data, Appl. Math. Model., 56, 172-185 (2018) · Zbl 1480.60028
[4] Di Bucchianico, A., Probabilistic and Analytical Aspects of The Umbral Calculus. Centrum voor Wiskunde en Informatica, CWI Tracts, vol. 119 (1997), Amsterdam · Zbl 0864.05006
[5] Di Bucchianico, A.; Loeb, D., A selected survey of umbral calculus, Dynamic Survey 3. Dynamic Survey 3, Electron. J. Comb., 2, 1-34 (2000) · Zbl 0851.05012
[6] Embrechts, P.; Frei, M., Panjer recursion versus FFT for compound distributions, Math. Methods Oper. Res., 69, 497-508 (2009) · Zbl 1205.91081
[7] Finner, H.; Kern, P.; Scheer, M., On some compound distributions with Borel summands, Insur. Math. Econ., 62, 107-127 (2015) · Zbl 1320.60041
[8] Gerhold, S.; Schmock, U.; Warnung, R., A generalization of Panjer’s recursion and numerically stable risk aggregation, Finance Stoch., 14, 81-128 (2010) · Zbl 1224.91060
[9] Guégan, D.; Hassani, B., A modified Panjer algorithm for operational risk capital calculations, J. Oper. Risk, 4, 53-72 (2009)
[10] Hess, K. T.; Liewald, A.; Schmidt, K. D., An extension of Panjer’s recursion, ASTIN Bull., 32, 283-297 (2002) · Zbl 1098.91540
[11] Johnson, N. L.; Kemp, A. W.; Kotz, S., Univariate Discrete Distributions (2005), Wiley: Wiley New York · Zbl 1092.62010
[12] Katz, L., Unified treatment of a broad class of discrete probability distributions, (Patil, G. P., Classical and Contagious Discrete Distributions (1965), Pergamon: Pergamon Oxford), 175-182
[13] Klugman, S. A.; Panjer, H. H.; Willmot, G. E., Loss Models: From Data to Decisions (2019), Wiley: Wiley Hoboken · Zbl 1409.62001
[14] Lefèvre, C.; Picard, P., Risk models in insurance and epidemics: a bridge through randomized polynomials, Probab. Eng. Inf. Sci., 29, 399-420 (2015) · Zbl 1414.91212
[15] Mullin, R.; Rota, G.-C., On the foundations of combinatorial theory III. Theory of binomial enumeration, (Harris, B., Graph Theory and Its Applications (1970), Academic Press: Academic Press New York), 167-213 · Zbl 0259.12001
[16] Niederhausen, H., Finite operator calculus with applications to linear recursions (2010), Project book
[17] Panjer, H. H., Recursive evaluation of a family of compound distributions, ASTIN Bull., 12, 22-26 (1981)
[18] Pestana, D. D.; Velosa, S. F., Extension of Katz-Panjer families of discrete distributions, REVSTAT Stat. J., 2, 145-162 (2004) · Zbl 1076.60017
[19] Picard, P.; Lefèvre, C., On the first crossing of the surplus process with a given upper barrier, Insur. Math. Econ., 14, 163-179 (1994) · Zbl 0806.62089
[20] Roman, S., The Umbral Calculus (1984), Academic Press: Academic Press Orlando · Zbl 0536.33001
[21] Rota, G.-C.; Kahaner, D.; Odlyzko, A., On the foundations of combinatorial theory VIII. Finite operator calculus, J. Math. Anal. Appl., 42, 684-760 (1973) · Zbl 0267.05004
[22] Rota, G.-C.; Taylor, B. D., The classical umbral calculus, SIAM J. Math. Anal., 25, 694-711 (1994) · Zbl 0797.05006
[23] Shevchenko, P. V., Calculation of aggregate loss distributions, J. Oper. Risk, 5, 3-40 (2010)
[24] Shiu, E. S.W., Steffensen’s poweroids, Scand. Actuar. J., 1, 123-128 (1982) · Zbl 0509.39008
[25] Stam, A. J., Polynomials of binomial type and compound Poisson processes, J. Math. Anal. Appl., 130, 493-508 (1988) · Zbl 0642.60010
[26] Steutel, F. W.; van Harn, K., Discrete analogues of self-decomposability and stability, Ann. Probab., 7, 893-899 (1979) · Zbl 0418.60020
[27] Sundt, B.; Jewell, W. S., Further results on recursive evaluation of compound distributions, ASTIN Bull., 12, 27-39 (1981)
[28] Sundt, B.; Vernic, R., Recursions for Convolutions and Compound Distributions with Insurance Applications, EAA Lecture Notes (2009), Springer: Springer Berlin · Zbl 1175.60004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.