×

Convergence rate for Galerkin approximation of the stochastic Allen-Cahn equations on 2D torus. (English) Zbl 1462.60089

Summary: In this paper we discuss the convergence rate for Galerkin approximation of the stochastic Allen-Cahn equations driven by space-time white noise on \(\mathbb{T}^2\). First we prove that the convergence rate for stochastic 2D heat equation is of order \(\alpha-\delta\) in Besov space \(\mathcal{C}^{-\alpha}\) for \(\alpha\in (0,1)\) and \(\delta>0\) arbitrarily small. Then we obtain the convergence rate for Galerkin approximation of the stochastic Allen-Cahn equations of order \(\alpha-\delta\) in \(\mathcal{C}^{-\alpha}\) for \(\alpha\in (0,2/9)\) and \(\delta>0\) arbitrarily small.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
82C28 Dynamic renormalization group methods applied to problems in time-dependent statistical mechanics
60H40 White noise theory

References:

[1] Albeverio, S.; Röckner, M., Stochastic differential equations in infinite dimensions: Solutions via Dirichlet forms, Probab. Theory Related Fields, 89, 347-386 (1991) · Zbl 0725.60055 · doi:10.1007/BF01198791
[2] Bahouri, H.; Chemin, J. Y.; Danchin, R., Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren Grundlehren der Mathematischen Wissenschaften, 343 (2011) · Zbl 1227.35004 · doi:10.1007/978-3-642-16830-7
[3] Beccari, M.; Hutzenthaler, M.; Jentzen, A., Strong and weak divergence of exponential and linear-implicit Euler approximations for stochastic partial differential equations with superlinearly growing non-linearities (2019)
[4] Becker, S.; Gess, B.; Jentzen, A., Strong convergence rates for explicit space-time discrete numerical approximations of stochastic Allen-Cahn equations (2017)
[5] Becker, S.; Jentzen, A., Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg-Landau equations, Stochastic Processes and Their Applications, 129, 1, 28-69 (2019) · Zbl 1403.60052 · doi:10.1016/j.spa.2018.02.008
[6] Breit, D.; Hofmanova, M., Space-time approximation of stochastic p-Laplace type systems (2019)
[7] Cui, J.; Hong, J., Strong and weak convergence rates of finite element method for stochastic partial differential equation with non-globally Lipschitz coefficients (2018)
[8] Davie, A. M.; Gaines, J. G., Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations, Mathematics of Computation, 70, 121-134 (2001) · Zbl 0956.60064 · doi:10.1090/S0025-5718-00-01224-2
[9] Evans, L. C., Partial Differential Equations, American Mathematical Society (1998) · Zbl 0902.35002
[10] Furihata, D.; Kovács, M.; Larsson, S., Strong convergence of a fully discrete finite element approximation of the stochastic Cahn-Hilliard equation, SIAM J. Numer. Anal., 56, 2, 708-731 (2018) · Zbl 1390.60231 · doi:10.1137/17M1121627
[11] Gubinelli, M., Controlling rough paths, J. Fund. Anal, 216, 1, 86-140 (2004) · Zbl 1058.60037 · doi:10.1016/j.jfa.2004.01.002
[12] Gubinelli, M., Ramification of rough paths, Journal of Differential Equations, 248, 4, 693-721 (2010) · Zbl 1315.60065 · doi:10.1016/j.jde.2009.11.015
[13] Gubinelli, M.; Imkeller, P.; Perkowski, N., Paracontrolled distributions and singular PDEs, Forum of Mathematics, Pi, 3, e675 (2015) · Zbl 1333.60149 · doi:10.1017/fmp.2015.2
[14] Gyöngy, I., Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I, Potential Anal., 9, 1-25 (1998) · Zbl 0915.60069 · doi:10.1023/A:1008615012377
[15] Gyöngy, I., Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II, Potential Anal., 11, 1-37 (1999) · Zbl 0944.60074 · doi:10.1023/A:1008699504438
[16] Gyöngy, L.; Millet, A., On discretization schemes for stochastic evolution equations, Potential Analysis, 23, 99-134 (2005) · Zbl 1067.60049 · doi:10.1007/s11118-004-5393-6
[17] Gyöngy, I.; Sabanis, S.; Siska, D., Convergence of tamed Euler schemes for a class of stochastic evolution equations, Stock. Partial Differ. Equ. Anal. Comput., 4, 2, 225-245 (2016) · Zbl 1342.60115
[18] Hairer, M., A theory of regularity structures, Invent. Math., 198, 2, 269-504 (2014) · Zbl 1332.60093 · doi:10.1007/s00222-014-0505-4
[19] Hairer, M.; Matetski, K., Optimal rate of convergence for stochastic Burgers-type equations, Stock. Partial Differ. Equ. Anal. Comput., 4, 2, 402-437 (2016) · Zbl 1357.60069
[20] Hutzenthaler, M., Jentzen, A.: On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with non-globally monotone coefficients. arXiv: 1401.0295 · Zbl 07206753
[21] Hutzenthaler, M.; Jentzen, A.; Salimova, D., Strong convergence of full-discrete nonlinearity-truncated accelerated exponential Euler-type approximations for stochastic Kuramoto-Sivashinsky equations, Communications in Mathematical Sciences, 16, 1489-1529 (2018) · Zbl 1406.60102 · doi:10.4310/CMS.2018.v16.n6.a2
[22] Jentzen, A.; Pusnik, P., Strong convergence rates for an explicit numerical approximation method for stochastic evolution equations with non-globally Lipschitz continuous non-linearities, IMA Journal of Numerical Analysis, 00, 1-46 (2019) · Zbl 1466.65161
[23] Jentzen, A.; Salimova, D.; Welti, T., Strong convergence for explicit space-time discrete numerical approximation methods for stochastic Burgers equations, Journal of Mathematical Analysis and Applications, 469, 2, 661-704 (2019) · Zbl 1403.60059 · doi:10.1016/j.jmaa.2018.09.032
[24] Kovacs, M.; Larsson, S.; Lindgren, F., On the discretization in time of the stochastic Allen-Cahn equation, Mathematische Nachrichten, 291, 3, 966-995 (2018) · Zbl 1388.60113 · doi:10.1002/mana.201600283
[25] Liu, W.; Röckner, M., Stochastic Partial Differential Equations: An Introduction, Universitext, Springer, Cham (2015) · Zbl 1361.60002 · doi:10.1007/978-3-319-22354-4
[26] Lyons, T. J., Differential equations driven by rough signals, Rev. Mat. Iberoamericana, 14, 215-310 (1998) · Zbl 0923.34056 · doi:10.4171/RMI/240
[27] Mourrat, J. C.; Weber, H., Global well-posedness of the dynamic Φ^4 model in the plane, The Annals of Probability, 45, 2398-2476 (2017) · Zbl 1381.60098 · doi:10.1214/16-AOP1116
[28] Nualart, D., The Malliavin Calculus and Related Topics (2006), Berlin: Springer, Berlin · Zbl 1099.60003
[29] Prato, G. D.; Debussche, A., Strong solutions to the stochastic quantization equations, Ann. Probab., 31, 4, 1900-1916 (2003) · Zbl 1071.81070 · doi:10.1214/aop/1068646370
[30] Revuz, D.; Yor, M., Continuous Martingales and Brownian Motion (1994), New York: Springer, New York · Zbl 0804.60001
[31] Röckner, M.; Zhu, R. C.; Zhu, X. C., Restricted Markov uniqueness for the stochastic quantization of and its applications, J. Fund. Anal, 272, 10, 4263-4303 (2017) · Zbl 1405.60096 · doi:10.1016/j.jfa.2017.01.023
[32] Sickel, W., Periodic spaces and relations to strong summability of multiple Fourier series, Math. Nachr., 124, 15-44 (1985) · Zbl 0614.42002 · doi:10.1002/mana.19851240103
[33] Stein, E. M.; Weiss, G. L., Introduction to Fourier Analysis on Euclidean Spaces (1971), Princeton, New Jersey: Princeton University Press, Princeton, New Jersey · Zbl 0232.42007
[34] Triebel, H., Interpolation theory, function spaces, differential operators, Journal of Applied Mathematics and Mechanics, 59, 12, 756-757 (1979)
[35] Triebel, H., Theory of Function Spaces III (2006), Birkhäuser: Springer, Birkhäuser · Zbl 1104.46001
[36] Tsatsoulis, P.; Weber, H., Exponential loss of memory for the 2-dimensional Allen-Cahn equation with small noise, Probability Theory and Related Fields (2019)
[37] Tsatsoulis, P.; Weber, H., Spectral gap for the stochastic quantization equation on the 2-dimensional torus, Ann. Inst. H. Poincare Probab. Statist., 54, 3, 1204-1249 (2018) · Zbl 1403.81030 · doi:10.1214/17-AIHP837
[38] Yan, Y., Galerkin finite element methods for stochastic parabolic partial differential equations, SI AM J. Numer. Anal, 43, 1363-1384 (2003) · Zbl 1112.60049 · doi:10.1137/040605278
[39] Zhu, R. C.; Zhu, X. C., Lattice approximation to the dynamical Φ_3^4 model, The Annals of Probability, 46, 397-455 (2015) · Zbl 1393.82014 · doi:10.1214/17-AOP1188
[40] Zhu, R. C.; Zhu, X. C., Piecewise linear approximation for the dynamical Φ_3^4 model, Sci. China Math., 63, 2, 381-410 (2020) · Zbl 1431.60127 · doi:10.1007/s11425-017-9269-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.