×

Polytopal Bier spheres and Kantorovich-Rubinstein polytopes of weighted cycles. (English) Zbl 1462.52019

Summary: The problem of deciding if a given triangulation of a sphere can be realized as the boundary sphere of a simplicial, convex polytope is known as the ‘Simplicial Steinitz problem’. It is known by an indirect and non-constructive argument that a vast majority of Bier spheres are non-polytopal. Contrary to that, we demonstrate that the Bier spheres associated to threshold simplicial complexes are all polytopal. Moreover, we show that all Bier spheres are starshaped. We also establish a connection between Bier spheres and Kantorovich-Rubinstein polytopes by showing that the boundary sphere of the KR-polytope associated to a polygonal linkage (weighted cycle) is isomorphic to the Bier sphere of the associated simplicial complex of “short sets”.

MSC:

52B12 Special polytopes (linear programming, centrally symmetric, etc.)
52B35 Gale and other diagrams
52B70 Polyhedral manifolds
57Q15 Triangulating manifolds
52A30 Variants of convex sets (star-shaped, (\(m, n\))-convex, etc.)

References:

[1] Adiprasito, K., Benedetti, B.: A Cheeger-type exponential bound for the number of triangulated manifolds (2017). arXiv:1710.00130v2 · Zbl 1446.57024
[2] Benedetti, B.; Ziegler, GM, On locally constructible spheres and balls, Acta Math., 206, 2, 205-243 (2011) · Zbl 1237.57025 · doi:10.1007/s11511-011-0062-2
[3] Björner, A.; Paffenholz, A.; Sjöstrand, J.; Ziegler, GM, Bier spheres and posets, Discrete Comput. Geom., 34, 1, 71-86 (2005) · Zbl 1079.52006 · doi:10.1007/s00454-004-1144-0
[4] Connelly, R.; Demaine, ED; Goodman, JE, Geometry and topology of polygonal linkages, Handbook of Discrete and Computational Geometry, 233-256 (2017), Boca Raton: CRC Press, Boca Raton
[5] Čukić, SLj; Delucchi, E., Simplicial shellable spheres via combinatorial blowups, Proc. Am. Math. Soc., 135, 8, 2403-2414 (2007) · Zbl 1117.06003 · doi:10.1090/S0002-9939-07-08768-0
[6] de Longueville, M., Bier spheres and barycentric subdivision, J. Comb. Theory Ser. A, 105, 2, 355-357 (2004) · Zbl 1058.57018 · doi:10.1016/j.jcta.2003.12.002
[7] de Longueville, M.: A Course in Topological Combinatorics. Universitext. Springer, New York (2013) · Zbl 1273.05001
[8] Delucchi, E., Hoessly, L.: Fundamental polytopes of metric trees via hyperplane arrangements (2016). arXiv:1612.05534 · Zbl 1440.54019
[9] Ewald, G., Combinatorial Convexity and Algebraic Geometry. Graduate Texts in Mathematics (1996), New York: Springer, New York · Zbl 0869.52001 · doi:10.1007/978-1-4612-4044-0
[10] Ewald, G.; Schulz, C., Nonstarshaped spheres, Arch. Math. (Basel), 59, 4, 412-416 (1992) · Zbl 0769.52006 · doi:10.1007/BF01197060
[11] Farber, M., Invitation to Topological Robotics. EMS Zurich Lectures in Advanced Mathematics (2008), Zürich: European Mathematical Society, Zürich · Zbl 1148.55011 · doi:10.4171/054
[12] Galashin, P., Panina, G.: Manifolds associated to simple games. J. Knot Theory Ramif. 25(12), Art. No. 1642003 (2016). arXiv:1311.6966 · Zbl 1391.57010
[13] Goodman, JE; Pollack, R., There are asymptotically far fewer polytopes than we thought, Bull. Am. Math. Soc., 14, 1, 127-129 (1986) · Zbl 0585.52003 · doi:10.1090/S0273-0979-1986-15415-7
[14] Goodman, JE; Pollack, R., Upper bounds for configurations and polytopes in \(\mathbb{R}^d\), Discrete Comput. Geom., 1, 3, 219-227 (1986) · Zbl 0609.52004 · doi:10.1007/BF02187696
[15] Gordon, J.; Petrov, F., Combinatorics of the Lipschitz polytope, Arnold Math. J., 3, 2, 205-218 (2017) · Zbl 1386.52010 · doi:10.1007/s40598-017-0063-0
[16] Jevtić, FD; Jelić, M.; Živaljević, RT, Cyclohedron and Kantorovich-Rubinstein polytopes, Arnold Math. J., 4, 1, 87-112 (2018) · Zbl 1402.51005 · doi:10.1007/s40598-018-0083-4
[17] Jojić, D.; Nekrasov, I.; Panina, G.; Živaljević, R., Alexander \(r\)-tuples and Bier complexes, Publ. Inst. Math. (Beograd) (N.S.), 104, 118, 1-22 (2018) · Zbl 1474.05390 · doi:10.2298/PIM1818001J
[18] Kalai, G., Many triangulated spheres, Discrete Comput. Geom., 3, 1, 1-14 (1988) · Zbl 0631.52009 · doi:10.1007/BF02187893
[19] Kantorovich, LV, On the translocation of masses, C. R. (Doklady) Acad. Sci. URSS (N.S.), 37, 199-201 (1942) · Zbl 0061.09705
[20] Kantorovich, L.V., Rubinshtein, G.Sh.: On a space of totally additive functions. Vestnik Leningrad. Univ. 13(7), 52-59 (1958) (in Russian) · Zbl 0082.11001
[21] Matoušek, J.: Using the Borsuk-Ulam Theorem. Lectures on Topological Methods in Combinatorics and Geometry. Universitext. Springer, Berlin (2003) (Corrected 2nd printing 2008) · Zbl 1016.05001
[22] Melleray, J.; Petrov, FV; Vershik, AM, Linearly rigid metric spaces and the embedding problem, Fundam. Math., 199, 2, 177-194 (2014) · Zbl 1178.46016 · doi:10.4064/fm199-2-6
[23] Nevo, E.; Santos, E.; Wilson, S., Many triangulated odd-dimensional spheres, Math. Ann., 364, 3-4, 737-762 (2016) · Zbl 1351.52013 · doi:10.1007/s00208-015-1232-x
[24] Pfeifle, J.; Ziegler, GM, Many triangulated 3-spheres, Math. Ann., 330, 4, 829-837 (2004) · Zbl 1062.52011 · doi:10.1007/s00208-004-0594-2
[25] Timotijević, M., Note on combinatorial structure of self-dual simplicial complexes, Mat. Vesnik, 71, 1-2, 104-122 (2019) · Zbl 1474.55001
[26] Vershik, AM, Kantorovich metric: initial history and little-known applications, J. Math. Sci. (N.Y.), 133, 4, 1410-1417 (2006) · Zbl 1090.28009 · doi:10.1007/s10958-006-0056-3
[27] Vershik, AM, Long history of the Monge-Kantorovich transportation problem, Math. Intell., 32, 4, 1-9 (2013) · Zbl 1284.01041 · doi:10.1007/s00283-013-9380-x
[28] Vershik, AM, The problem of describing central measures on the path spaces of graded graphs, Funct. Anal. Appl., 48, 4, 256-271 (2014) · Zbl 1370.37005 · doi:10.1007/s10688-014-0069-5
[29] Vershik, AM, Classification of finite metric spaces and combinatorics of convex polytopes, Arnold Math. J., 1, 1, 75-81 (2015) · Zbl 1348.54021 · doi:10.1007/s40598-014-0005-z
[30] Villani, C., Topics in Optimal Transportation. Graduate Studies in Mathematics (2003), Providence: American Mathematical Society, Providence · Zbl 1106.90001
[31] Villani, C., Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften (2009), Berlin: Springer, Berlin · Zbl 1156.53003 · doi:10.1007/978-3-540-71050-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.