×

Sobolev \(W^1_p\)-spaces on \(d\)-thick closed subsets of \({\mathbb{R}}^n \). (English. Russian original) Zbl 1462.46044

Sb. Math. 211, No. 6, 786-837 (2020); translation from Mat. Sb. 211, No. 6, 40-94 (2020).
Summary: Let \(S \subset \mathbb{R}^n\) be a nonempty closed set such that for some \({d \in [0,n]}\) and \(\varepsilon>0\) the \(d\)-Hausdorff content \(\mathscr{H}^d_{\infty}(S \cap Q(x,r)) \geq \varepsilon r^d\) for all cubes \(Q(x,r)\) with centre \(x \in S\) and edge length \(2r \in (0,2]\). For each \(p>\max\{1,n-d\}\) we give an intrinsic characterization of the trace space \(W_p^1(\mathbb{R}^n)|_S\) of the Sobolev space \(W_p^1(\mathbb{R}^n)\) to the set \(S\). Furthermore, we prove the existence of a bounded linear operator \(\operatorname{Ext}\colon W_p^1(\mathbb{R}^n)|_S \,{\to}\, W_p^1(\mathbb{R}^n)\) such that \(\operatorname{Ext}\) is the right inverse to the standard trace operator. Our results extend those available in the case \(p \in (1,n]\) for Ahlfors-regular sets \(S\).

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
28A78 Hausdorff and packing measures
28A25 Integration with respect to measures and other set functions

References:

[1] H. Whitney 1934 Analytic extensions of differentiable functions defined in closed sets Trans. Amer. Math. Soc.36 1 63-89 · JFM 60.0217.01 · doi:10.1090/S0002-9947-1934-1501735-3
[2] H. Whitney 1934 Differentiable functions defined in closed sets. I Trans. Amer. Math. Soc.36 2 369-387 · JFM 60.0217.02 · doi:10.1090/S0002-9947-1934-1501749-3
[3] G. Glaeser 1958 Étude de quelques algèbres tayloriennes J. Analyse Math.6 1-124 · Zbl 0091.28103 · doi:10.1007/BF02790231
[4] Yu. Brudnyi and P. Shvartsman 1997 The Whitney problem of existence of a linear extension operator J. Geom. Anal.7 4 515-574 · Zbl 0937.58007 · doi:10.1007/BF02921632
[5] E. Bierstone, P. D. Milman and W. Pawłucki 2003 Differentiable functions defined in closed sets. A problem of Whitney Invent. Math.151 2 329-352 · Zbl 1031.58002 · doi:10.1007/s00222-002-0255-6
[6] C. Fefferman 2005 A sharp form of Whitney’s extension theorem Ann. of Math. (2)161 1 509-577 · Zbl 1102.58005 · doi:10.4007/annals.2005.161.509
[7] C. Fefferman 2005 A generalized sharp Whitney theorem for jets Rev. Mat. Iberoam.21 2 577-688 · Zbl 1102.58004 · doi:10.4171/RMI/430
[8] C. Fefferman 2006 Whitney’s extension problem for \(C^m\) Ann. of Math. (2)164 1 313-359 · Zbl 1109.58016 · doi:10.4007/annals.2006.164.313
[9] C. Fefferman \(2007 C^m\) extension by linear operators Ann. of Math. (2)166 3 779-835 · Zbl 1161.46013 · doi:10.4007/annals.2007.166.779
[10] V. G. Maz’ya and S. V. Poborchi 1997 Differentiable functions on bad domains World Sci. Publ., River Edge, NJ xx+481 pp. · Zbl 0918.46033 · doi:10.1142/3197
[11] C. L. Fefferman, A. Israel and G. K. Luli 2014 Sobolev extension by linear operators J. Amer. Math. Soc.27 1 69-145 · Zbl 1290.46027 · doi:10.1090/S0894-0347-2013-00763-8
[12] C. Fefferman, A. Israel and G. K. Luli 2014 The structure of Sobolev extension operators Rev. Mat. Iberoam.30 2 419-429 · Zbl 1321.46036 · doi:10.4171/RMI/787
[13] C. Fefferman, A. Israel and G. K. Luli 2016 Fitting a Sobolev function to data I Rev. Mat. Iberoam.32 1 275-376 · Zbl 1338.65028 · doi:10.4171/RMI/887
[14] C. Fefferman, A. Israel and G. K. Luli 2016 Fitting a Sobolev function to data II Rev. Mat. Iberoam.32 2 649-750 · Zbl 1386.65068 · doi:10.4171/RMI/897
[15] A. Israel 2013 A bounded linear extension operator for \(L^{2,p}(\mathbb{R}^2)\) Ann. of Math. (2)178 1 183-230 · Zbl 1315.46034 · doi:10.4007/annals.2013.178.1.3
[16] P. Shvartsman 2009 Sobolev \(W^1_p\)-spaces on closed subsets of \(\mathbf{R}^n\) Adv. Math.220 6 1842-1922 · Zbl 1176.46040 · doi:10.1016/j.aim.2008.09.020
[17] P. Shvartsman 2014 Sobolev \(L^2_p\)-functions on closed subsets of \(\mathbf{R}^2\) Adv. Math.252 22-113 · Zbl 1322.46024 · doi:10.1016/j.aim.2013.10.017
[18] P. Shvartsman Extension criteria for homogeneous Sobolev space of functions of one variable 1812.00817v2
[19] P. Shvartsman Sobolev functions on closed subsets of the real line: long version 1808.01467v2
[20] E. M. Stein 1970 Singular integrals and differentiability properties of functions Princeton Math. Ser. 30 Princeton Univ. Press, Princeton, NJ xiv+290 pp. · Zbl 0207.13501
[21] L. Ihnatsyeva and A. V. Vähäkangas 2013 Characterization of traces of smooth functions on Ahlfors regular sets J. Funct. Anal.265 9 1870-1915 · Zbl 1293.46022 · doi:10.1016/j.jfa.2013.07.006
[22] A. Jonsson and H. Wallin 1984 Function spaces on subsets of \(\mathbb{R}^n\) Math. Rep. 2 Harwood Acad. Publ., London 1 xiv+221 pp. · Zbl 0875.46003
[23] P. Shvartsman 2006 Local approximations and intrinsic characterization of spaces of smooth functions on regular subsets of \(\mathbb{R}^n\) Math. Nachr.279 11 1212-1241 · Zbl 1108.46030 · doi:10.1002/mana.200510418
[24] G. A. Kalyabin 1995 The intrinsic norming of the retractions of Sobolev spaces onto plane domains with the points of sharpness Abstracts of conference on functional spaces, approximation theory, nonlinear analysis in honor of S. M. Nikolskij Moscow 330
[25] V. S. Rychkov 2000 Linear extension operators for restrictions of function spaces to irregular open sets Studia Math.140 2 141-162 · Zbl 0972.46018 · doi:10.4064/sm-140-2-141-162
[26] D. R. Adams and L. I. Hedberg 1996 Function spaces and potential theory Grundlehren Math. Wiss. 314 Springer-Verlag, Berlin xii+366 pp. · doi:10.1007/978-3-662-03282-4
[27] P. W. Jones 1981 Quasiconformal mappings and extendability of functions in Sobolev spaces Acta Math.147 1-2 71-88 · Zbl 0489.30017 · doi:10.1007/BF02392869
[28] A. P. Calderón 1972 Estimates for singular integral operators in terms of maximal functions Studia Math.44 6 563-582 · Zbl 0222.44007 · doi:10.4064/sm-44-6-563-582
[29] H. Triebel 2001 The structure of functions Monogr. Math. 97 Birkhäuser Verlag, Basel xii+425 pp. · Zbl 0984.46021 · doi:10.1007/978-3-0348-8257-6
[30] E. T. Sawyer 1982 A characterization of a two-weight norm inequality for maximal operators Studia Math.75 1 1-11 · Zbl 0508.42023 · doi:10.4064/sm-75-1-1-11
[31] L. C. Evans and R. F. Gariepy 1992 Measure theory and fine properties of functions Stud. Adv. Math. CRC Press, Boca Raton, FL viii+268 pp. · Zbl 0804.28001
[32] C. Cascante, J. M. Ortega and I. E. Verbitsky 2006 On \(L^p-L^q\) trace inequalities J. London Math. Soc. (2)74 2 497-511 · Zbl 1109.46036 · doi:10.1112/S0024610706023064
[33] D. Gilbarg and N. S. Trudinger 1983 Elliptic partial differential equations of second order Grundlehren Math. Wiss. 224 Springer-Verlag, Berlin 2nd ed., xiii+513 pp. · Zbl 0361.35003 · doi:10.1007/978-3-642-61798-0
[34] P. Hajłasz and P. Koskella 2000 Sobolev met Poincaré Mem. Amer. Math. Soc. 145 Amer. Math. Soc., Providence, RI 688 x+101 pp. · Zbl 0954.46022 · doi:10.1090/memo/0688
[35] P. Hajłasz 1996 Sobolev spaces on an arbitrary metric space Potential Anal.5 4 403-415 · Zbl 0859.46022
[36] S. K. Vodop’yanov 1996 Monotone functions and quasiconformal mappings on Carnot groups Sibirsk. Mat. Zh.37 6 1269-1295 · Zbl 0876.30020
[37] English transl. in S. K. Vodop’yanov 1996 Siberian Math. J.37 6 1113-1136 · Zbl 0876.30020 · doi:10.1007/BF02106736
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.