×

Using data assimilation to train a hybrid forecast system that combines machine-learning and knowledge-based components. (English) Zbl 1462.37090

Summary: We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data are in the form of noisy partial measurements of the past and present state of the dynamical system. Recently, there have been several promising data-driven approaches to forecasting of chaotic dynamical systems using machine learning. Particularly promising among these are hybrid approaches that combine machine learning with a knowledge-based model, where a machine-learning technique is used to correct the imperfections in the knowledge-based model. Such imperfections may be due to incomplete understanding and/or limited resolution of the physical processes in the underlying dynamical system, e.g., the atmosphere or the ocean. Previously proposed data-driven forecasting approaches tend to require, for training, measurements of all the variables that are intended to be forecast. We describe a way to relax this assumption by combining data assimilation with machine learning. We demonstrate this technique using the Ensemble Transform Kalman Filter to assimilate synthetic data for the three-variable Lorenz 1963 system and for the Kuramoto-Sivashinsky system, simulating a model error in each case by a misspecified parameter value. We show that by using partial measurements of the state of the dynamical system, we can train a machine-learning model to improve predictions made by an imperfect knowledge-based model.
©2021 American Institute of Physics

MSC:

37M10 Time series analysis of dynamical systems

Software:

GitHub

References:

[1] Abarbanel, H. D. I.; Rozdeba, P. J.; Shirman, S., Neural Comput., 30, 2025 (2018) · Zbl 1472.68127 · doi:10.1162/neco_a_01094
[2] Arcomano, T.; Szunyogh, I.; Pathak, J.; Wikner, A.; Hunt, B. R.; Ott, E., Geophys. Res. Lett., 47, e2020GL087776 (2020) · doi:10.1029/2020GL087776
[3] Asch, M., Bocquet, M., and Nodet, M., Data Assimilation: Methods, Algorithms, and Applications, Fundamentals of Algorithms (SIAM, 2016). · Zbl 1361.93001
[4] Bishop, C. H.; Etherton, B. J.; Majumdar, S. J., Mon. Weather Rev., 129, 420 (2001) · doi:10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2
[5] Bocquet, M.; Brajard, J.; Carassi, A.; Bertino, L., Found. Data Sci., 2, 55 (2020) · doi:10.3934/fods.2020004
[6] Bocquet, M.; Brajard, J.; Carrassi, A.; Bertino, L., Nonlinear Process. Geophys., 26, 143 (2019) · doi:10.5194/npg-26-143-2019
[7] Bocquet, M. B.; Farchi, A.; Malartic, Q., Found. Data Sci. · Zbl 1478.93687 · doi:10.3934/fods.2020015
[8] Brajard, J.; Carrassi, A.; Bocquet, M.; Bertino, L., J. Comput. Sci., 44, 101171 (2020) · doi:10.1016/j.jocs.2020.101171
[9] Burgers, G.; Jan van Leeuwen, P.; Evensen, G., Mon. Weather Rev., 126, 1719 (1998) · doi:10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
[10] Chattopadhyay, A.; Hassanzadeh, P.; Subramanian, D., Nonlinear Process. Geophys., 27, 373 (2020) · doi:10.5194/npg-27-373-2020
[11] Evensen, G., Ocean Dyn., 53, 343 (2003) · doi:10.1007/s10236-003-0036-9
[12] Fletcher, S., Data Assimilation for the Geosciences: From Theory to Applications (2017), Elsevier
[13] Gottwald, G. A.; Reich, S.
[14] Hamilton, F.; Berry, T.; Sauer, T., Phys. Rev. X, 6, 011021 (2016) · doi:10.1103/PhysRevX.6.011021
[15] Houtekamer, P. L.; Mitchell, H. L., Mon. Weather Rev., 126, 796 (1998) · doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
[16] Hunt, B. R.; Kostelich, E. J.; Szunyogh, I., Physica D, 230, 112 (2007) · Zbl 1115.62030 · doi:10.1016/j.physd.2006.11.008
[17] Jaeger, H.; Haas, H., Science, 304, 78 (2004) · doi:10.1126/science.1091277
[18] Kalman, R. E., J. Basic Eng., 82, 35 (1960) · doi:10.1115/1.3662552
[19] Kassam, A.-K.; Trefethen, L. N., SIAM J. Sci. Comput., 26, 1214 (2005) · Zbl 1077.65105 · doi:10.1137/S1064827502410633
[20] Kuramoto, Y.; Tsuzuki, T., Prog. Theor. Phys., 55, 356 (1976) · doi:10.1143/PTP.55.356
[21] Law, K.; Stuart, A.; Zygalakis, K., Data Assimilation: A Mathematical Introduction (2015), Springer International · Zbl 1353.60002
[22] Lguensat, R.; Tandeo, P.; Ailliot, P.; Pulido, M.; Fablet, R., Mon. Weather Rev., 145, 4093 (2017) · doi:10.1175/MWR-D-16-0441.1
[23] Li, Z.; Navon, I. M., Q. J. R. Meteorol. Soc., 127, 661 (2001) · doi:10.1002/qj.49712757220
[24] Lorenz, E. N., J. Atmos. Sci., 20, 130 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[25] Lu, Z.; Pathak, J.; Hunt, B.; Girvan, M.; Brockett, R.; Ott, E., Chaos, 27, 041102 (2017) · doi:10.1063/1.4979665
[26] Lukoševičius, M., Neural Networks: Tricks of the Trade (Springer, 2012), pp. 659-686.
[27] Mood, A. M., Introduction to the Theory of Statistics, 394-399 (1950), McGraw-Hill · Zbl 0039.13901
[28] Ott, E.; Hunt, B. R.; Szunyogh, I.; Zimin, A. V.; Kostelich, E. J.; Corazza, M.; Kalnay, E.; Patil, D.; Yorke, J. A., Tellus A, 56, 415 (2004) · doi:10.3402/tellusa.v56i5.14462
[29] Pathak, J.; Hunt, B.; Girvan, M.; Lu, Z.; Ott, E., Phys. Rev. Lett., 120, 024102 (2018) · doi:10.1103/PhysRevLett.120.024102
[30] Pathak, J.; Lu, Z.; Hunt, B. R.; Girvan, M.; Ott, E., Chaos, 27, 121102 (2017) · Zbl 1390.37138 · doi:10.1063/1.5010300
[31] Pathak, J.; Wikner, A.; Fussell, R.; Chandra, S.; Hunt, B. R.; Girvan, M.; Ott, E., Chaos, 28, 041101 (2018) · doi:10.1063/1.5028373
[32] Puskorius, G. V.; Feldkamp, L. A., IEEE Trans. Neural Networks, 5, 279 (1994) · doi:10.1109/72.279191
[33] Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, Nature, 566, 195 (2019) · doi:10.1038/s41586-019-0912-1
[34] Sivashinsky, G., Acta Astronaut., 4, 1177 (1977) · Zbl 0427.76047 · doi:10.1016/0094-5765(77)90096-0
[35] Szunyogh, I., Applicable Atmospheric Dynamics: Techniques for the Exploration of Atmospheric Dynamics (2014), World Scientific · Zbl 1314.86001
[36] Szunyogh, I.; Kostelich, E. J.; Gyarmati, G.; Kalnay, E.; Hunt, B. R.; Ott, E.; Satterfield, E.; Yorke, J. A., Tellus A, 60, 113 (2008) · doi:10.1111/j.1600-0870.2007.00274.x
[37] Tomizawa, F.; Sawada, Y., Geoscientific model development, Geosci. Model Dev. Discuss., 2020 · doi:10.5194/gmd-2020-211
[38] Wang, X.; Bishop, C. H.; Julier, S. J., Mon. Weather Rev., 132, 1590 (2004) · doi:10.1175/1520-0493(2004)132<1590:WIBAEO>2.0.CO;2
[39] Whitaker, J. S.; Hamill, T. M., Mon. Weather Rev., 130, 1913 (2002) · doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
[40] Wikner, A.; Pathak, J.; Hunt, B.; Girvan, M.; Arcomano, T.; Szunyogh, I.; Pomerance, A.; Ott, E., Chaos, 30, 053111 (2020) · doi:10.1063/5.0005541
[41] Wikner, A., (2020). “MATLAB code for Combined Hybrid-Parallel Prediction,” GitHub. https://github.com/awikner/CHyPP.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.